Belle II Highlights and Prospects

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Slavomira Stefkova on behalf of the Belle II collaboration

Beyond the Flavour Anomalies II workshop 22.04.2021

Online

SuperKEKB Accelerator

SuperKEKB is an asymmetric-energy e⁺e⁻ collider in Tsukuba, Japan:

@Y(4S) resonance (\sqrt{s} = 10.58 GeV): on-resonance data

 $\Upsilon(4S) \rightarrow B^+B^-, B^0\bar{B}^0$ with $\mathscr{B} > 96\%$

- @ 60 MeV below Y(4S): off-resonance data
- @ Y(5S) resonance: B_S physics (future)

With nano-beam scheme and upgraded rings plan to achieve 30 x higher inst. Iumi than KEKB:

⊳ x 20 smaller β*y

In Belle II expect O(~15) higher backgrounds than Belle

Belle II Detector

Belle II detector was built to give similar or better performance even under mentioned O(~15) backgrounds

- **DAQ+Trigger**: Dark-matter searches
- VXD: Better K_s efficiency and improved vertex resolution
- CDC: Very good momentum resolution for charged tracks
- **PID**: Achieve very good K/ π separation

Luminosity Status

Status:

- Regular data-taking with 20 ladders of PXD from April 2019
- Despite Covid-19, collected 130 fb⁻¹ of onresonance and 9 fb⁻¹ of off-resonance data
- Slower luminosity accumulation than initially planned
- In this talk, results are based on ICHEP 2020 and Moriond 2021 dataset

Important Milestone:

 Record-breaking instantaneous luminosity of 2.4x10³⁴ cm⁻²s⁻¹, now running
 @ 2.5-2.6x10³⁴ cm⁻²s⁻¹

Luminosity Prospects

Goal: 50 ab-1 by 2031

Short-term plan:

- ▷ By summer 2022: 720 fb⁻¹ (~ Belle dataset)
- Summer 2022-spring 2023: full new PXD installation → important to maintain good vertex resolution at high luminosity

Long-term plan:

- ▷ By 2026: ~15 ab⁻¹ (~ 20 x Belle dataset)
- 2026: QCS/IR modification necessary to reach design luminosity
- Detailed proposals are currently under discussion, but no exact plan is established yet!

Warning: this luminosity roadmap is tentative, especially after LS1 in 2022

Channels with missing energy

Reconstruction

ICHEP 2020: 35 fb⁻¹

8

Novel Search, for $B^+ \rightarrow K^+ \nu \bar{\nu}$ Moriond 2021:63 fb-1 First Belle II B-physics paper about to be submitted to PRL ▷ Rare decay belonging to $b \rightarrow sll$ family with SM $\mathscr{B}(\mathbf{B}^+ \rightarrow \mathbf{K}^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$ B_{sig}^{\pm} Sensitive to BSM physics $B_{\rm tag}^{\pm} \rightarrow {\rm hadrons}$ Not observed yet! Published limits set by other B-factories use either SL or Hadronic tag reconstruction ▷ This measurement $e_{sig} \stackrel{\epsilon}{\to} e_{tag} \stackrel{\circ}{\to} 0.04 \% _{\epsilon_{sig}} \stackrel{\circ}{\to} 0.04 \% _{\epsilon_{sig}$ u, c, tSM reference taken from Buras et al: <u>https://arxiv.org/abs/1409.4557</u> 4000 Phase space SM form factor 3000 Observed limit on Data[fb⁻¹] Experiment Approach S Year $BR(B^+ \rightarrow K^+ \nu \bar{\nu})$ Entrie $< 1.6 \times 10^{-5}$ SL + Had 2000 429 2013 BABAR [Phys.Rev.D87,112005] tag Belle II preliminary $< 5.5 \times 10^{-5}$ 711 Belle 2013 Had tag 1000 [Phys.Rev.D87,111103(R)] simulation $< 1.9 \times 10^{-5}$ 711 Belle 2017 SL taq [Phys.Rev.D96,091101(R)] 0

 $B^+ \to K^+ \nu \bar{\nu}$

5

 $\mathbf{0}$

10

 $q^2 \left[GeV^2/c^4 \right]$

15

20

Nove Search for $B^+ \to K^+ \nu \bar{\nu}$ Moriond 2021:63 fb-1

Basic Reconstruction (inclusive tag approach := LHCb-like):

- 1. Reconstruct signal = the highest p_T track with at least 1 PXD hit (~80% ϵ_{sig})
- 2. All other tracks and clusters reconstructed as rest-of-event (ROE) object
- 3. Discriminating variables are identified and used later as an input to BDTs:
 - Event-shape, ROE dynamics, Kinematics of signal B, Vertexing variables

BB

B(→Kvv)B

10

qq

 $\times 10^{-2}$

8

6

2

0

2

fraction of events

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

MVA Selection and Measurement Region Definition:

4. Two consecutive BDTs are trained and applied to suppress the backgrounds

(signal: ${f B}^+ o {f K}^+
u ar
u$, background: generic B decays + continuum)

5. Identify signal region (SR) with BDT₂ output and bin further in 2D: BDT₂ x $p_T(K^+)$ to maximise sensitivity

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

Validation with control channels:

6. Check BDTs output with both $B^+ \to J/\psi(\to \mu^+\mu^-)K^+$ (background-like), $B^+ \to J/\psi(\to \mu^+\mu^-)K^+$ (signal-like*) reconstruction:

*signal-like: 1. Ignore dimuon from J/ψ to mimic missing energy

2. Replace four-momenta of K⁺ by that of the signal to mimic 3-body kinematics

7. Check Data/MC agreement in off-resonance data

Signal Region

12

9

3.0

12

3.5

Novel Search for $B^+ \rightarrow K^+ \nu \bar{\nu}$

Signal Extraction:

8. Binned simultaneous ML fit to on-resonance + offresonance data is performed:

▷ pdf includes 175 nuisance parameters + 1 parameter of interest: signal strength μ (1 μ = SM BF = 4.6×10^{-6})

nuisance parameters = systematic uncertainties

Measured signal strength $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst})$ $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 1.9^{+1.6}_{-1.5} \times 10^{-5}$

9. No significant signal is observed so limit on BF is set with CL_s method: 4.1x10⁻⁵ @90 % CL

Moriond 2021:63 fb-1

Novel Search for $\mathbf{B}^{\mathbf{63 fb}^{-1}} \xrightarrow{\Upsilon(4S)} \mathbf{K}^+ \nu \overline{\nu}$ Moriond 2021:63 fb-1

Summary:

- Set a competitive limit with only 63 fb⁻¹
- Central value of BF show enhancement wrt SM consistent with other results
- Comparison with other experiments shows at least matching performance (see backup for more details)

Prospects:

- This novel method can be used in other channels (pi, rho, Ks)
- Improving signal-background separation with other MVA methods seems promising
- Leading systematics: background normalisation uncertainty can be also reduced with increasing statistics (see backup for more details)
- ▷ Combined analysis using both tagged and inclusive tag approaches could lead to faster observation → under consideration

Experiment	Year	Observed limit on ${\rm BR}(B^+\to K^+\nu\bar\nu)$	Approach	Data [fb ⁻¹]
BABAR	2013	<1.6×10 ⁻⁵ SL + Had [Phys.Rev.D87,112005] tag		429
Belle	2013	$< 5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]	Had tag	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tag	711
Belle II preliminary	2021	$< 4.1 \times 10^{-5}$	Inclusive tag	63

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ Morion

Moriond 2021:63 fb⁻¹

- ▶ We are also publishing the selection efficiency as a q² ($\nu \bar{\nu}$) spectrum: total integrated selection efficiency is 4.3%
- We plan to upload the json file of the pdf as adapted for pyhf to HEPdata
- Can you think of other useful quantity/ object that we could provide?

Search For $B^+ \rightarrow K^+ \tau l$: Belle II Prospects

LFU violation could be accompanied by LFV

Many recent NP models predict prominent effect in BF in transitions with 3rd lepton generation

New idea to measure $\mathscr{B}(B^+ \to K^+ \tau l)$: Schematic by G. de Marino Exploit semi-inclusive tagging because of high BF of \triangleright e, μ, π, ρ $B^- \rightarrow \overline{D}{}^0 X = 79 \pm 4\%$ В 1. Reconstruct $B_{tag} D^0$ 2. Reconstruct signal's K and I, and τ 3. $D^{0}X$ provides the tag-side Higher signal efficiency but also higher backgrounds \rightarrow need to reach ~ 1x10⁻⁵ LHCb: [JHEP 06 (2020) 129] $\mathscr{B}(B^+ \to K^+ \tau \mu) < 3.9 \times 10^{-5}$ Fit m_{τ} : $m_{\tau}^2 = m_B^2 + m_{Kl}^2 - 2(E_B^* E_{Kl}^* - |\vec{p}_{B_{sig}}^*||\vec{p}_{Kl}^*|\cos\theta)$ \triangleright **BaBar:** [Phys.Rev.D 86 (2012) 012004] $E_{\text{beam}}^* \frac{1}{\sqrt{(E_{\text{beam}}^*)^2 - m_B^2}}$ $\mathcal{B}(B \to h \tau \ell) (\times 10^{-5})$ Mode Central value 90% C.L. UL $B^+ \rightarrow K^+ \tau \mu$ $0.0^{+2.7}_{-1.4}$ < 4.8 θ angle between $\overrightarrow{p}^*_{B_{ator}}(=-\overrightarrow{p}^*_{B_{tor}})$ and \overrightarrow{p}^*_{K} $B^+ \rightarrow K^+ \tau e$ $-0.6^{+1.7}_{-1.4}$ < 3.0In Belle II this search is also under-way with hadronic tag \triangleright $0.5^{+3.8}_{-3.2}$ $B^+ \rightarrow \pi^+ \tau \mu$ <7.2 $2.3^{+2.8}_{-1.7}$ $\rightarrow \pi^+ \tau e$ < 7.5

Fully reconstructed channels

Towards R(K) in Belle II

Moriond 2021:63 fb⁻¹

~2028

First Belle II measurement of $B^+ \to K^+ l^+ l^-$

- Signal yield extracted with 2D ML
 - fit to M_{bc} and ΔE : 8.6^{+4.3}_{-3.9}(stat) ± 0.4(syst)
- ▷ Significance: 2.7 sigma

DESY.

 \triangleright Peaking background from $B^+ \to K^+ \pi^+ \pi^-$

Prospects for R(K)

- Measurement is going to be statistically limited for foreseeable future with leading systematics due to lepton ID~0.4%
- In order to confirm LHCb's R(K) anomaly (5 sigma) need at least 20 ab⁻¹

R(K) Belle II vs LHCb

Moriond 2021:63 fb⁻¹

Belle II Prospects (R(K*), angular)

[Belle arXiv: 1904.02440]

Belle (R(K*))

▶ Largest deviation in the low q² bin

[Belle Phys. Rev. Lett. 118, 111801] Belle P'₅

- The largest deviation with 2.6 sigma observed in muon channel
- Electron channel is deviating with
 1.1 sigma
- With 2.8 ab⁻¹ the uncertainty on P'₅ (both e & mu) will be comparable to LHCb 3 fb⁻¹ (mu only)

Summary

- Belle II is stably accumulating data
- Only (biased) subset of Belle II measurements and/or their prospects were shown
- ▷ New reconstruction approaches are being implemented in channels with missing energy, resulting already in competitive limit for $B^+ \to K^+ \nu \bar{\nu}$
- With more data we hope to not only reduce statistical errors of the measurements but also find ways to improve on the systematics

Thank you

Belle II Physics Program

Upsilon(4S)

SuperKEKB is not only B-factory:

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ Moriond 2021:63 fb-1

Discriminating variables used in BDT

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

Impact of systematics on the limit

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ Moriond 2021:63 fb-1

Background shifts

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

Background composition of B-decays in measurement region: BDT₁>0.9 & BDT₂>0.93

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

Measurement Setup

Region	2D Bin Boundary Definition	Physics Processes	\sqrt{s}	
Signal	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/}c$	signal +	$\Upsilon(4S)$	
Region (SR)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	all backgrounds		
Control	$p_{T}(K^{+}) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/}c$	signal +	$\Upsilon(4S)$	
Region 1 (CR1)	$BDT_2 \in [0.93, 0.95]$	all backgrounds		
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/}c$	continuum	off-resonance	DT T DT
Region 2 (CR2)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	backgrounds	(-60 MeV/c^2)	
Control	$p_{T}(K^{+}) \in [0.5, 2.0, 2.4, 3.5] \text{ GeV/}c$	continuum	off-resonance	
Region 3 (CR3)	$BDT_2 \in [0.93, 0.95]$	backgrounds	$(-60 \text{ MeV/}c^2)$	

Nove Search for $B^+ \to K^+ \nu \bar{\nu}$ Moriond 2021:63 fb-1

Comparison with other experiments

Experiment	Year	Approach	$L[fb^{-1}]$	$BR[\times 10^{-5}]$	$\sigma\left[\times 10^{-5}\right]$	$\sigma \sqrt{\frac{L}{L_{Belle2}}} \left[\times 10^{-5} \right]$
BABAR(*)	2013	SL + Had tag	429	0.8	0.6	1.7
Belle(**)	2013	Had tag	711	3.0	1.6	5.5
Belle(**)	2017	SL tag	711	1.0	0.6	1.9
Belle II preliminary	2021	Inclusive tag	63	1.9	1.6	1.6

(*) Combined central value of $B^+ \to K^+ \nu \bar{\nu} \ / \ B^0 \to K^0 \nu \bar{\nu}$

(**) Computed from $N_{sig}/(\varepsilon_{sig}\cdot N_{B\bar{B}})$.

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

Validation with control channels:

6. Check BDTs output with both $B^+ \to J/\psi(\to \mu^+\mu^-)K^+$ (background-like), $B^+ \to J/\psi(\to \mu^+\mu^-)K^+$ (signal-like*) reconstruction:

*signal-like: 1. Ignore dimuon from J/ψ to mimic missing energy

2. Replace four-momenta of K⁺ by that of the signal to mimic 3-body kinematics

Novel Search for $B^+ \to K^+ \nu \bar{\nu}$ (Moriond 2021:63 fb-1

2 BDTs:

- 4. Choose 51 most discriminating variables for BDT₁ training (signal: B->Knunu, background: generic B decays + continuum)
- 5. Apply BDT₁ on signal and background and select events with $BDT_1 > 0.9$
- 6. Train BDT₂ with the same set of 51 most discriminating variables on the same samples
 - ▷ 2-step BDT leads to significant :=[10%,50%] of the sensitivity in the high purity region
- 7. Identify signal region (SR) and bin 2D: $BDT_2 \times pT(K)$ further to maximise sensitivity

Towards R(D(*)) in Belle II

- \triangleright b \rightarrow clnu tree level process
- Current tension with SM: 3.1 sigma
- ▷ Belle II measured BF of B → D*Inu with hadronic FEI

$$\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = \left(4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s}\right) \%$$

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)} l\nu)}{\mathscr{B}(B \to D^{(*)} \tau \nu)}$$

- R(D(*)) usually measured with SL or hadronic tag in Belle with simultaneous fit to O_{sig}(MVA output), E_{ECL}
- ▷ In Belle measurement, leading systematics → insufficient MC statistics for both pdf modelling and training of MVA

- Optimistic = 50% improvement in reconstruction efficiency in SL or Had tagged analyses
- Other orthogonal measurements could come via semi-inclusive tagging

Belle II Highlights and Prospects | Slavomira Stefkova

https://arxiv.org/pdf/2101.08326.pdf

ICHEP 2020: 35 fb-1

Optimistic Belle II unofficial

201 201

203

200

2029 2029

²030 15031 2032

202

Data sample up to year

B->Knunu tagged vs untagged: naive

LFV Tau decays

B-> Ktautau + LFV B->tau+X

Observables	Belle $0.71 ab^{-1} (0.12 ab^{-1})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$\text{Br}(B^+ \rightarrow K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0
${ m Br}(B^0 o au^+ au^-) \cdot 10^5$	< 140	< 30	< 9.6
$Br(B_s^0 \to \tau^+ \tau^-) \cdot 10^4$	< 70	< 8.1	_
${ m Br}(B^+ ightarrow K^+ au^\pm e^\mp) \cdot 10^6$	-	_	< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	_	_	< 3.3
${ m Br}(B^0 o au^\pm e^\mp) \cdot 10^5$	_	_	< 1.6
${ m Br}(B^0 o au^\pm \mu^\mp) \cdot 10^5$	_	_	< 1.3

[Babar, PRL.118.031802]

$$\mathscr{B}(B \rightarrow K\tau\tau) < 2 \times 10^{-3}$$

Belle II Charged PID Performance

ICHEP 2020: 35 fb⁻¹

Particle Identification (K/ π Separation)

Gamma Spectrum from B->s\gamma

Important step towards inclusive measurement of B->sgamma:

- · Decay rate sensitive to BSM physics, decay rate does not depend on SM FF
- Radiative penguin sensitive to Willson coefficient |C7|
- Evidence found also using untagged analysis strategy with 63 inv fb^{-1}
- Main background (gammas from pi0 and eta)
- E\gamma expected at smeared mb_{2} with smearing due to perturbative gluon brews and non-perturbative Fermi motion

Prospects

- Implementing SL and Hadronic tagging techniques for this measurement
- Developing pi0 and eta object identification and suppression

Theoretical interpretation

- Measured gamma spectrum can be fitted |C incl 7 |^{2} and F(k)
- Model-Independent extraction consistent with SM

Moriond 2021:63 fb⁻¹

