

Identification of exotic highly ionising particles at the Belle II pixel detector using unsupervised auto-encoders

Katharina Dort on behalf of the Belle II group at the University of Giessen

(katharina.dort@physik.uni-giessen.de)

DPG Conference 2021

18/03/2021

The Belle II Experiment

JUSTUS-LIEBIG-UNIVERSITA GIESSEN

- The Belle II experiment is located at the asymmetrical electron-positron collider SuperKEKB in Japan
- Centre-of-mass energy
 10.58 GeV and world-record luminosity

- 2-layer DEPFET pixel detector (PXD)
- Pixel sizes: 50 μm 85 μm
- Data rate coming from PXD is drastically higher than rate of all other sub-detectors
- Online data reduction is required

Anomalous particle signatures

- Detection of particles with low momentum, high charge deposition, uncommon trajectories is compromised by data reduction mechanism
- Identification of these particles relying solely on PXD observables would help to mitigate this effect
- → Unique event signature of these particles facilitates identification in PXD

Objective:

 Filter out signal particles against beam background with PXD data only

Examples:

- Exotic new physics: magnetic monopoles
- Long-lived particles
- Relevant for various analyses:
 slow pions

Katharina Dort DPG 2021

Pixel detector observables

- Pixel detector observables used for this study:
 - Signal from 9x9 pixel matrix (optimized for our studies) around pixel with highest charge value
 - Global cluster position

- Why use machine learning techniques?
 - Information of multiple observables can be combined efficiently
- Why unsupervised?
 - No assumptions about signal or background required
- Why auto-encoders?
 - Can cope with large imbalance between signal and background

Part of the PXD readout system in the Giessen lab

Katharina Dort DPG 2021

Auto-encoders - Training process

before training

- Neural network learns to reconstruct pixel matrix that was created by beam background particles
- Difference between input and output matrix is used to adapt the weights during the training process

Auto-encoders - Training process

after training

- Neural network learns to reconstruct pixel matrix that was created by beam background particles
- Difference between input and output matrix is used to adapt the weights during the training process

Auto-encoders - evaluation

- In the evaluation step, the network will be able to reconstruct beam background matrices but fail if presented with signal matrices (= anomaly)
- The reconstruction loss is used to quantify the ability to reproduce a given pixel matrix

Validation in simulation

- Simulation of beam background and (exotic) highly ionising particles (e.g. anti-deuterons, magnetic monopoles,...) as signal
- Signal is characterized by a high reconstruction loss

 Auto-encoders have a filtering functionality that needs to be combined with a subsequent in-depth analysis

Signal in Background data

What happens if there is signal in the training data?

- Training and evaluations were repeated with signal mixed into the training sample
- Small amounts < 0.1 % of signal are negligible, for a few percent of signal the training is compromised
- Beam background is assumed to be orders of magnitude higher in the PXD suggesting that this effect is negligible for our studies

Summary / Outlook

- Data selection mechanism in PXD readout discards information that could be related to new physics
- A PXD rescue system relying on PXD data only is developed
- Auto-encoders as unsupervised machine learning technique are able to filter signal (= anomalous) PXD data against beam background

 Studies about implementation of neural network on FPGAs for online application in progress

Thank you very much!

Katharina Dort DPG 2021

BACK-UP

PROJECT OVERVIEW - FURTHER RESOURCES

Mini-Workshop: Anomaly detection with Neural Networks, Giessen, 21.02.2020

https://indico.belle2.org/event/1658/

 Search for Highly Ionizing Particles with the Pixel Detector in the Belle II Experiment (M.Sc. Thesis Katharina Dort)

https://docs.belle2.org/record/1382?ln=en

• Self-Organizing Maps und Principal Components Analysis (B. Sc. Thesis Stephanie Käs)

https://docs.belle2.org/record/1600?ln=en

Hopfield Network for Cluster PID at the PXD (Specialization module Irina Heinz)

https://www.uni-giessen.de/fbz/fb07/fachgebiete/physik/institute/iipi/arbeitsgruppen/ag-lange/neuro/hopfield-networks-vertiefungsmodul-irina-heinz/view

 Voxel-Quantization - Detecting Clusters in Highdimensional Data (Specialization module Johannes Bilk, Johannes Budak)

https://www.uni-giessen.de/fbz/fb07/fachgebiete/physik/institute/iipi/arbeitsgruppen/ag-lange/neuro/bilk_budak/view

PIXEL DETECTOR READ-OUT

- Data rate coming from PXD is drastically higher than rate of all other sub-detectors
- Online data reduction is required
- ROIs (regions-of-interest) formed by HLT tracking and DATCON

 <u>Challenge</u>: particles without a reconstructable track are not detected

CDC and others PXD read-out SVD **PXD** FEE **DHHC** ×40 ~20 GB/s **DATCON** ONSEN **Event ROIs** Merger **Builder 1** HLT <1 GB/s T. Geßler et al, The ONSEN Data Reduction System for the Belle II Pixel **Event** Detector, IEEE Trans. Nucl. Sci., Builder 2 62:1149-1154

 <u>Possible solution</u>: a cluster rescue system to generate ROIs using other techniques