

Latest results from Belle II

Ezio Torassa INFN Padova on behalf of the Belle II Collaboration

March 10th 2021

La Thuile 2021

Virtual mode

INFN

Outlook

- SuperKEKB collider
- Current integrated luminosity
- Luminosity plan
- Belle II Detector
- Detector performance
- Belle II Physics program
 - Belle II Physics results: Dark sector, $\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{\nu}_{\ell}$ BB mixing, TD CPV, τ mass
- Summary

SuperKEKB collider

SuperKEKB is a new e⁺e⁻ collider located at KEK (Tsukuba, Japan), it operates in the **intensity frontier** region with a target instantaneous luminosity of 6×10^{35} cm⁻² s⁻¹ which is 30 times larger than that of the previous KEKB collider.

SuperKEKB startup

2016 Phase 1	201	7	201 Phas	8 e 2	2019 - 2021 Phase 3	
1 st Feb 1 st July	Belle II in except SVI	stalled D & PXD	19 th Mar 7 th July		from 11 th Mar 2019 to now	
TOP detector installation	Main Ring re Installation of Dumping rin	enovation of QCS g install.		SVD det Installatio	i. on	
Single Beam commissioning			Beam col	llisions	Beam collisions	
Summer STOP	Winter STOP	Ĺ	A× = 5.55 x ∫ £ = 0.	10 ³³ cm ⁻² s 5 fb ⁻¹	$\mathcal{L}^{MAX} = 2.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ $\int \mathcal{L} = 94.5 \text{ fb}^{-1}$	

4 March 10th 2021

La Thuile 2021

Current integrated luminosity

We kept SuperKEKB and Belle II running in 2020 during the COVID-19 crisis, with extra effort from the local crew and the help of remote shifters

Luminosity world record

2.11 × 10^{34} cm⁻²s⁻¹ (KEK June 2009) 2.14 × 10^{34} cm⁻²s⁻¹ (LHC May 2018) 2.4 × 10^{34} cm⁻²s⁻¹ (SuperKEKB June 2020)

Current $\int \mathcal{L} = 94.5 \text{ fb}^{-1}$

Results presented here used Run2019 + ~40% Run2020a/b: $\int \mathcal{L} = 34.6 \text{ fb}^{-1}$ Next preliminary results will use Run2019 + 100% Run2020a/b: $\int \mathcal{L} = 62.8 \text{ fb}^{-1}$

5 March 10th 2021

La Thuile 2021

Luminosity plan

La Thuile 2021

Belle II detector

7 March 10th 2021

La Thuile 2021

Subdetector installation

Barrel KLM: 2013

TOP: 2016 Endcap KLM: 2014 CDC: 2016 ECL: 2017 **ARICH: 2017** SVD: 2018 PXD: 2018 Inner layer + 2 outer ladders

PXD: 2022 Full detector

Detector performance

9 March 10th 2021

La Thuile 2021

Belle II physics program

Belle II physics program

- Precise measurement of the CKM parameters

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d^{\text{mass}} \\ s^{\text{mass}} \\ b^{\text{mass}} \end{pmatrix}$$

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0 \qquad \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} + 1 + \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} = 0$$

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0 \qquad \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} + 1 + \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} = 0$$

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0 \qquad \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} + 1 + \frac{V_{ub} V_{ud}}{V_{cb}^* V_{cd}} = 0$$

- Search of new physics with precise measurements of B, charm and τ decays

$$\mathcal{R}_{D^*} \equiv \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \ell \nu)} \qquad \mathcal{R}_D \equiv \frac{\mathcal{B}(B \to D \tau \nu)}{\mathcal{B}(B \to D \ell \nu)}$$

$$B \bigcirc d & d & D^{(*)}$$

 U^*U

 U^*U

- Hadron spectroscopy and dark sector

La Thuile 2021

Belle II physics program

La Thuile 2021

Belle II physics results

2 published PRL dark-sector searches:

- Search for an invisibly decaying Z' boson [PRL 124(2020)141801] (published 6 April 2020)
- Search for axion-like particles [PRL 125(2020)161806]

(published 14 October 2020)

12 conference papers posted to arXiv:

- Calibration of the hadronic full-event interpretation. [arXiv:2008.06096] (17 Aug. 2020)
- ► B0 → D^{*+} ℓ_v ((1) first result, (2) untagged, (3) using FEI). (12 June, 18 Aug., 16 Sep. 2020)
- ► Hadronic mass moments of $B \rightarrow X_c v$ decays. [arXiv:2009.04493] (9 Sep. 2020)
- ► Rediscovery of $B \rightarrow \pi \ell v.$ [arXiv:2008.08819] (20 Aug. 2020)
- B lifetime in hadronic decays. [arXiv:2005.07507] (15 May 2020)
- Calibration of the flavour tagger, [arXiv:2008.02707] (6 Aug 2020) used to make "rediscovery" of CPV in B → J/ψ K_S. [BELLE2-NOTE-PL-2020-11-1]
- Rediscovery of $B \rightarrow \phi K^*$. [arXiv:2008.03873] (10 Aug 2020)
- ► B → charmless ((1) first result, (2) CP asymmetries). (27 May, 20 Sep. 2020)
- ► Tau lepton mass measurement. [arXiv:2008.04665] (10 Aug 2020)

Charmless B decays → Riccardo Manfredi talk

La Thuile 2021

Dark sector: $Z' \rightarrow invisible$

Simple extensions of the SM: Z' boson originated for extra U(1)' [PRL 124(2020)141801] symmetry that couples both to SM and NP invisible particles.

14

Dark sector: $Z' \rightarrow invisible$

We used 0.276 fb⁻¹ of good-quality data with full PID information taken in Phase2. No anomalies were observed above 3 σ local significance We placed nontrivial exclusion limits:

90% C.L. upper limits on coupling constant g'

90% C.L. upper limits on signal efficiency times cross section

The red band shows the region that could explain the anomalous muon magnetic moment

La Thuile 2021

Dark sector: Axion-like particles

Axion/Axion-like: singlet neutral scalar or pseudoscalar

[PRL 125(2020)161806]

16 March 10th 2021

La Thuile 2021

Dark sector: Axion-like particles

We used 0.445 fb⁻¹ of good-quality data taken in Phase2.

We model the peaking contribution using a Crystal Ball function. The mass-dependent CB parameters used in the real data are fixed by fitting simulated events.

No significant excess seen, the highest local significance is 2.8σ

Extension of the exclusion region in the $(g_{a\gamma\gamma},m_a)$ param. space already with ~0.5 fb⁻¹

17 March 10th 2021

La Thuile 2021

$\overline{\mathsf{B}}^0 \to \mathsf{D}^{*+} \ell^- \overline{\nu}_{\ell}$

 $\begin{array}{ll} \text{Measurements of semileptonic } \overline{B^0} \to D^{*+} \ \ell^- \ \overline{\nu}_\ell \ \text{decay} \ (D^{*+} \to D^0 \pi^+ \ , \ D^0 \to \text{K}^- \pi^+ \ , \ \ell = e \ \text{or} \ \mu) \\ \hline [arXiv:2008.10299] & \text{Full Event Interpretation (FEI algorithm)} \\ \hline [arXiv:2008.07198] & \text{Untagged} \end{array}$

<u>FEI:</u> one of the B mesons produced in the collision event with hadronic decay channels (B_{tag}) is reconstructed and used to extract the signal of the other B meson (B_{sig}) $m_{miss}^2 = (p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_I)^2 \qquad m_{miss}^2 \approx m_v^2 \sim 0$

<u>Untagged</u>: B meson direction constrained on a cone around $Y = D^{*+} \ell^{-}$ direction

18 March 10th 2021

La Thuile 2021

$$R_{e\mu} = \frac{\mathcal{B}(\overline{B}^0 \to D^{*+} e^- \overline{\nu}_e)}{\mathcal{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_\mu)} = 0.99 \pm 0.03$$

Electron and muon semileptonic B decays are a background for the τ decay, Their understanding is also important for a precise measurement of $R_{\tau l}$ where we have a discrepancy with respect to SM expectation:

La Thuile 2021

BB mixing and time-dependent CPV

Current results will not have a large impact on the WA but the channel is essential to prove the readiness of the experiment to perform complex and precise measurements

La Thuile 2021

τ mass measurement

We used 8.8 fb⁻¹ of data accumulated during 2019 at Y(4S)

Three-prong τ decay: $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}$

Identification of charged particles is based on the selection $E_{ECL}/P_{lab} < 0.8$

Mass of τ lepton measured from the threshold in "pseudomass" variable:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

$$M_{min} \leq m_{\tau} \quad \text{without ISR and FSR}$$

$$M_{min} \leq m_{\tau} \quad \text{without ISR and FSR}$$

1.78

1.76

is measurement is in good agreement h the current world average. at. error will dominate up to 50 fb⁻¹

March 10th 2021 21

Events

Pull

200

100

0

 χ^2 /dof = 1.256

 $N_{evts} = 8742$

1.72

1.74

La Thuile 2021

Virtual mode

[arXiv:2008.04665]

Summary

- The SuperKEKB collider and the Belle II detector allowed to have stable data collection in 2019 and 2020. The max. luminosity now at 2.4x10³⁴ cm⁻² s⁻¹ will be increased and will reach 6x10³⁵ cm⁻² s⁻¹ in 2029.
- The data collected in the 2018 commissioning run allowed us to publish two PRL papers adding new exclusion limits in the Dark Sector.
- Belle II started Phase 3 operations in March 2019, up to now a total of 94.5 fb⁻¹ integrated luminosity have been recorded.
- Several analysis are ongoing, we are already competitive with BaBar and Belle in the Dark Sector, we plan to get a similar statistics within 2022 and to become competitive with them for all the analysis.

Backup

La Thuile 2021

SuperKEKB parameters

$$\mathcal{L} = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^{*}} \left(\frac{R_{L}}{R_{\xi_{y}}} \right)$$

Machine parameters

 I_{\pm} beam current

 β_y^* vertical beta function

 $\zeta_{y\pm}$ beam-beam parameter

 R_L , $R_\zeta\,$ reduction factors

	E (GeV) LER HER	I (A) LER HER	β [*] y (mm) LER HER	ζ _{y±} LER HER	Crossing angle (mrad)
KEKB	3.5 8.0	1.64 1.19	5.9 5.9	0.129 0.090	22
SuperKEKB	4.0 7.0	2.80 2.00	0.30 0.30	0.088 0.081	83
		x 1 5	x 20		

The factor 30 of instantaneous luminosity increase can be obtained with a factor 1.5 of beam currents increase and a factor 20 of β_y^* decrease.

$$\beta_y^*$$
 = distance were $\sigma_y = 2 \sigma_y (IP)$

From KEKB to SuperKEKB

25 March 10th 2021

La Thuile 2021

Belle II Collaboration

- 1050 active collaborators (15% are women)
- 120 institutions
- 26 countries/regions

2