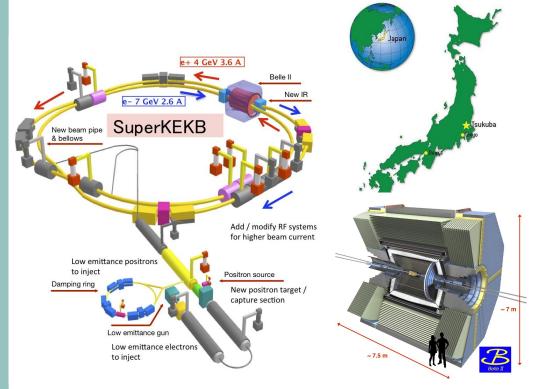


Search for the LFV-Decay $\tau \rightarrow \mu \pi^0$

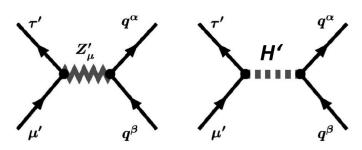

18.03.2021 DPG-spring-conference

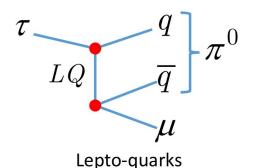
Marton Nemeth-Csoka Felix Meggendorfer Christian Kiesling

Belle-II-Experiment

https://belle2.desy.de/ https://www.cityofirvine.org/multicultural-and-international-affairs/tsukuba-japan 18.03.21 Marton Nemeth-Csoka

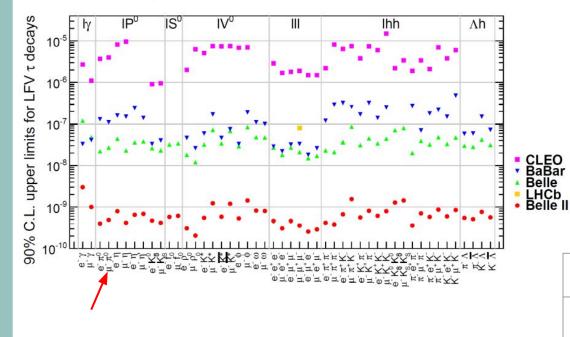
- e-e+-Accelerator at Y
 (4S)-resonance (10,6 GeV)
- "B-Factory" \rightarrow B\overline{B}-pairs background from u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c} events


- Ideal environment for τ-Pair-Production
- → background mainly from qq, signal easy to separate from B-events


LFV-Decay $\tau \rightarrow \mu \pi^0$

New Physics Tree Models

Flavor violating Z and H



- LFV-decay already at tree-level
- All final state particles are measurable
- 2-body decay → in tau rest system Pion and Muon have same total momentum
- tau rest system can be estimated directly from decay products (no neutrino)

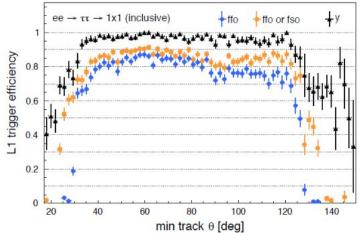
Current state of LFV tau-decays

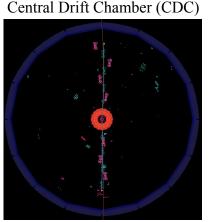
Table 14. Expected limits on several selected τ LFV searches.

Observables	Belle	Belle	e II
	(2014)	$5 ab^{-1}$	$50 ab^{-1}$
$\overline{\mathrm{Br}(\tau \to \mu \gamma) [10^{-9}]}$	< 45	< 15	< 5
$Br(\tau \to e\gamma) [10^{-9}]$	< 120	< 39	< 12
$Br(\tau \to \mu\mu\mu)$ [10 ⁻⁹]	< 21	< 3	< 0.3
$Br(\tau \rightarrow eee) [10^{-9}]$	< 27	< 4	< 0.4
$Br(\tau \to eKK) [10^{-9}]$	< 33	< 6	< 0.6
$Br(\tau \to \mu \pi^0) [10^{-9}]$	< 120	< 34	< 11
$ \Im(\eta_s) (au o K_{\mathrm{S}}^0\pi\nu)$	0.026	0.010	0.003

Integrated Luminosity

Belle	Belle II (8.3.2021)
710 fb ⁻¹	94.48 fb ⁻¹


Due to new trigger Belle II already competitive at much lower luminosity compared to Belle



New single-track trigger at Belle2

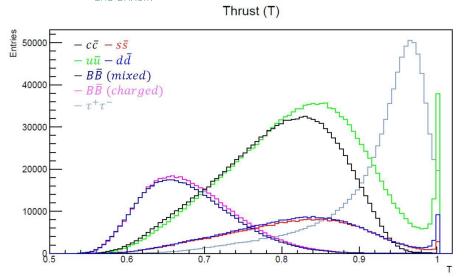
Tau-decay modes:

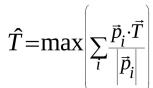
on a single charged track in the CDC

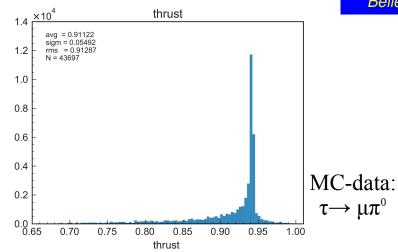
- measurements using the
 1-1-topology possible
- Improvement by using 1-prongs as tag lepton instead of 3-prongs
- \rightarrow 5-times more statistics

Expected challenges

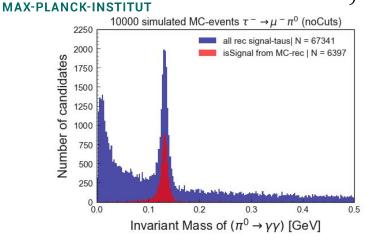
Analysis of 1-1 topologies:

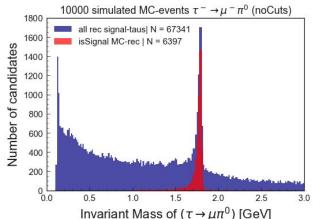

possible approaches


 π⁰ reconstructed via π⁰ → γγ τ reconstructed via τ → μπ⁰ 	\rightarrow Cut on π^0 -mass \rightarrow Cut on [μ π^0]-mass
• generic tau and qq background	→ explicit reconstruction of tau-signal: cut on charged multiplicity, particle identification (high momentum muon)
• BB-background	→ Cut on event shape variables e.g. thrust


Cut on Event-Shape: Thrust

EWP-Research Progress #2 , KEK-Chula S. Nishida, B. Asavapibhop, N. Suwonjandee, J. Ineead, 2020 18.03.21



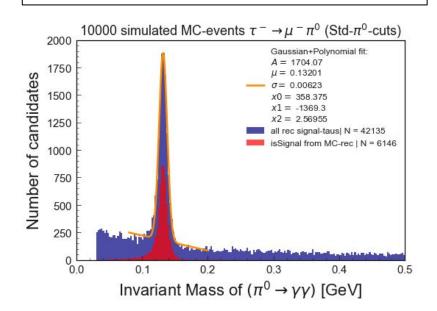

- Taus have high momentum: jet-like
- Low-momentum ("spherical")
 B-Mesons can be eliminated by Thrust-Cut

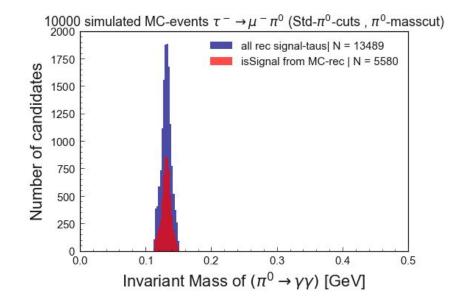
First look, π^0 and τ -reconstruction

generated 10 000 MC-sample with decay:

$$e^+e^- \to [\tau^- \to \mu\pi^0][\tau^+ \to \text{SM-decay}]$$

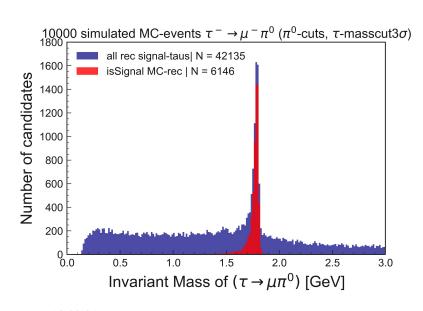
→ Sharp signal peak visible

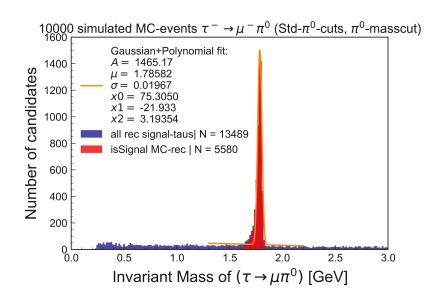

→ ~60% of signal can be reconstructed


Cut on $[\pi^0 \rightarrow \gamma \gamma]$ -invariant mass (MC)

Standard Belle2-Cuts for π^0 to exclude events from detector-specific dead regions

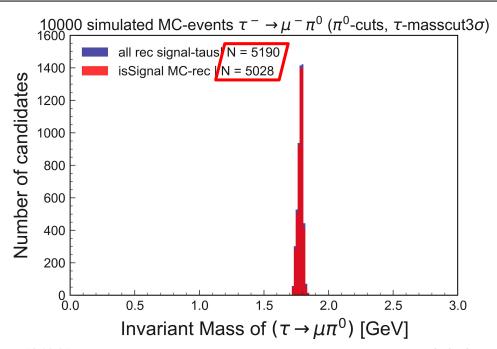
 3σ -Cut: 0.1137 GeV < invM(π ⁰) < 0.1503 GeV





Cut on $[\pi^0 \rightarrow \gamma \gamma]$ -invariant mass (MC)

 3σ -Cut: 0.1137 GeV < invM(π ⁰) < 0.1503 GeV



Cut on $[\tau \rightarrow \mu \pi]$ -invariant mass (MC)

 3σ -Cut: 1.7268 GeV < invM(τ $\rightarrow \mu \pi^0$) < 1.8448 GeV

- \rightarrow 50% of signal can be reconstructed
- \rightarrow almost all data is from signal (97%)

 \rightarrow goal: get close to 0% BG or signal extraction by multivariable-methods

No background yet!

18.03.21 Marton Nemeth-Csoka DPG Spring Meeting 2021

Summary: Search for LFV decay $\tau \rightarrow \mu \pi^0$

- More signal tau decays to analyze due to single-track-trigger with tag-τ
 being a 1-prong instead of 3-prong from traditional analyses
- 2-body-decay with fully reconstructed final state
- $B\overline{B}$ -, $q\overline{q}$ -background
- Cuts on invariant Mass, Thrust

- Next: Analysis on SM-tau-decay, $q\bar{q}$ -event MC-s with realistic BG
- Hope for 400 fb⁻¹ by mid-2022: surpassing Belle-results

18.03.21 Marton Nemeth-Csoka DPG Spring Meeting 2021 1