(Preparing for) Measurement of the UT angle ϕ_3 at

BEAUTY 2020

Eiasha Waheed on behalf of Belle II Collaboration

Eiasha WAHEED

Belle II

High Energy Accelerator Organization (KEK)

Introduction

CKM Quark Mixing

• V_{CKM} contains coupling constants of weak interaction and complex phase

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \lambda^2/2 \\ -\lambda \\ A\lambda^3(1 - \rho - i\eta) \end{pmatrix}$$

Unitarity \Rightarrow 6 triangle relations in the complex plane, e.g.

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td}$$

semileptonic B decay branching fractions

$$B^0_{(s)}
ightarrow D_{(s)}K$$

Measurement of φ_3 (phase of $|V_{ub}|$ in $B \rightarrow$ Charm)

- The weak phase $\phi_3 \equiv \arg \frac{i\eta}{\rho}$... can be me interference between two amplitudes of bo
- Theory is "pristine" in these approaches
 (2014) 051]

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^- \to \overline{D^0}K^-)}{\mathcal{A}^{\mathrm{favor.}}(B^- \to D^0K^-)} = r_B e^{i(\delta_B - \phi_3)}$$

 δ_B strong CP conserving phase

Three techniques to measure ϕ_3 : use rare decays of the form $B^{\pm} \to D^{(*)} K^{(*)\pm}$

easured in $B^{\pm} \to D^{(*)}K^{(*)\pm}$ decays through (
oth $B^- \to D^0 K^-$ and $B^- \to \overline{D}^0 K^-$ (tree level
$\Rightarrow \delta \phi_3 / \phi_3 \sim 10^{-7}. \text{ [J. Brod, J. Zupan, JHEP 14} \\ \varphi_3 \phi_3 \qquad BB^- \rightarrow D^{\text{VM}}KK$
$D(\mathcal{D}^{(0*)0} \overline{D}(\mathcal{D}^{(0*)0})$
Favored V_{us} \overline{u}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
AHEED $A(D = -\overline{D}) V = A$

Measurement of φ_3 (phase of $|V_{ub}|$ in $B \rightarrow$ Charm)

Three techniques to measure ϕ_3 used rare decays of the form $B^{\pm} \to D^{(*)}K^{(*)\pm}$

- **GLW method** : Interference with CP eigenstates
- Final state of $D^0 = CP$ eigenstates such as K^+K^- , $\pi^+\pi^-$, $K_S\pi^0$ [Phys. Lett. B 253, 483] • **ADS method:** Interference with flavor specific
 - Final state of D^0 = doubly-Cabibbo suppressed D decays such $K\pi$, $K\pi\pi^0$ [Phys. Rev. Lett. 78, 3257]
- **BPGGSZ:** Self conjugate of D decays using Dalitz plot
 - Final state of D⁰ = three body decays such as $D \to K_S \pi^+ \pi^-, K_S K^+ K^-$ [Phys. Rev. D 68, 054018]

ϕ_3 is extracted by combining information from all measurements

Belle II (will) stay competitive in all these measurements \rightarrow strength in measuring neutral e.g. K_S (present in the final states in all methods)

Measurement of φ_3 (phase of $|V_{ub}|$ in $B \rightarrow$ Charm)

Self-Conjugated

- Belle II (will) stay competitive in all these measurements \rightarrow strength in measuring neutral e.g. K_s (present i CF/DCS
- Belle II is $\operatorname{vel} D^{\mathsf{u}}$ Mixing a smaller nur LHCb.
- Rediscovery of D^0 channel $(D^0 \to K_s \pi^+ \pi^-)$: Selfconjugate channel with K_{s} in it, mixing parameters
- $\cdot (\mathcal{L}_{\text{Belle}}/50 \,\text{ab}^{-1}) + \sigma_{\text{irred}}^2$
- from strong phase. <u>alk</u> for more detail.

CFIDCS

Current Precision of CKM Matrix

World average (HFLAV) [hflav.web.cern.ch/]

$$\beta \equiv \phi_1 = (22.2 \pm 0.7)^{\circ}$$
$$\alpha \equiv \phi_2 = (84.9^{+5.1}_{-4.5})^{\circ}$$
$$\gamma \equiv \phi_3 = (71.1^{+4.6}_{-5.3})^{\circ}$$

 φ_3 is measured in tree decays together with $|V_{ub}|$ provides a SM reference for new physics searches !!!

New Physics in φ_3

- φ_3 is measured in tree decays together with $|V_{ub}|$ provides a SM reference for new physics searches !!!
- The traditional way: compare φ_3 from tree-level decays with the one from penguindominated processes.
- Recent studies show that new physics contributions to tree-level Wilson coefficients C_1 and C_2 of $\mathcal{O}(40\%)$ and $\mathcal{O}(20\%)$ are not excluded. [10.1007/JHEPO6(2014)040, 10.1103/ PhysRevD.92.033002
- Shifts in φ_3 of the order of $\pm 4^\circ$ can not be eliminated [10.1103/PhysRevD.92.033002].
- Strong motivation to 1° precision.

SuperKEKB and Belle II

SuperKEKB Accelerator

Asymmetric B-factory with e⁻ at 7 GeV and e⁺ at 4 GeV

 $Y = \sigma \times \mathcal{L}$ where $\mathcal{L} \propto \frac{\text{Beam current}}{\text{Beam size}}$ events cross-section luminosity $[s^{-1}] [cm^2] [cm^{-2}s^{-1}]$

Belle II Detector and Status (1)

Improvement

- Improved tracking and vertexing [see <u>Thibaud Humair's Talk</u>]
- Better particle identification
- Better calorimeter resolution

Challenges

- Larger trigger rate 500 Hz \rightarrow 30KHz
- Larger background, beam background
 - Performance improvement

Upgraded Belle II spectrometer (top half) as compared to the present Belle detector (bottom half).

Projection towards 50 ab⁻¹

- Belle II data-taking is ongoing, many sub-detectors at design performance already, other improving steadily
- B physics traditional channels such as B $\rightarrow J/\psi K_S$ result presented on **ICHEP2020**.
- $B \rightarrow \pi^+\pi^- B$.F measurement shown at **ICHEP2020**

Plan to collect 50 ab⁻¹ of collisions at and near $\Upsilon(4S)$ successor to Belle at KEKB (1.05 ab^{-1})

Belle II Detector and Status (3)

Integrated Luminosity

• Belle II data taking efficiency has been improved.

> World Record by SuperKEKB on June 15th 2020: $\mathscr{L} = 2.4 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

 $\sim 1 \text{ ab}^{-1}$ before long shutdown in 2022 to surpass BaBar and Belle \rightarrow Belle II will join in with the hunting for New Physics in earnest.

Measurement of ϕ_3

Measurement of ϕ_3 at Belle II

•
$$B^{\pm} \to D(\to K_S^0 \pi^+ \pi^-) K^{\pm} \to \text{the most set}$$

• large systematic uncertainty (i.e. 8.9°) due to $\Im SZ$ method • Each point on the Dalitz plot has amplitude model. Ind δ_D is determined via amplitude model Model-independent GGSZ method different r_D and δ_D . we used by Bell Large systematic uncertainty (i.e. 8.9°) due B • use quantunt Ooharegee anaplitudo D $r_B e^{i(\delta_B - \gamma)}$ (CLEO-6, BESH) to measure anality de BPGGSZ method $r_D e^{i(\delta_D)}$ averaged strong phase differences, *ci*, *si*. • Use quantum coherence in $c_i = \langle \cos \Delta \delta_D \rangle, s_i = \langle \sin \Delta \delta_D \rangle$ $D\bar{D}$ (CLEO-c, BESIII) to D^0K measure amplitude-averaged strong phase differences c_i, s_{i.} $r_D =$ $c_i = \langle \cos \Delta \delta_D \rangle, s_i = \langle \sin \Delta \delta_D \rangle$

• Determination of $\varphi_3 \Rightarrow$ dominated by Dalitz-plot (BPGGSZ) analysis at Belle/Belle II.

sensitive single analysis.

Belle II prospects for $\varphi_3(1)$

• Measurement of $\phi_3 \rightarrow$ a dream of B factories \rightarrow difficult due to color suppression.

Golden mode in Belle II: $B^{\pm} \rightarrow D^0(K_S^0 \pi^- \pi^+) K^{\pm}$

- Model independent binned Dalitz plot approach.
- Number of events in i^{th} bin is a function of x_+, y_+

$$N_i^{\pm} = h_B \Big[K_{\pm i} + r_B^2 K_{\mp i} + \sqrt{K_i K_{-i}} (x_{\pm} + C_i) \Big]$$

$$(x_{\pm}, y_{\pm}) = r_B (\cos(\pm \phi_3 + \delta_B), \sin(\pm \phi_3 + \delta_B))$$

• Precise strong phase measurement (c_i, s_i) need to match Belle II statistical precision, expected to be measured from BESIII data set $\rightarrow 20 \text{ fb}^{-1}$

Rediscovery of $B \rightarrow DK$ at Belle II

- More sensitive to φ_3 than $B \rightarrow D\pi$ because of its higher r_B value.
- Rediscovery of $B \rightarrow DK$ with more than 5σ evidence.

Without PID Cut

• Exploits multivariate techniques to suppress continuum background and good particle identification performances of Belle II.

$\overline{\Delta E} = E_R^* - E_{beam}^*$ With PID Cut

Belle II prospects for $\phi_3(2)$

Golden mode in Belle II: $B^{\pm} \rightarrow D^0(K_S^0 \pi^- \pi^+) K^{\pm}$

- Limited data set (5.15 fb⁻¹) not enough to measure $B^{\pm} \to D^0(K_S^0 \pi^- \pi^+) K^{\pm}$
- Signal extraction from 2D unbinned maximum likelihood fit of $M_{\rm bc}$ and ΔE

• $B^{\pm} \to D^0(K_S^0 \pi^- \pi^+) \pi^{\pm}$ can be measured \to Control sample for $B^{\pm} \to D^0(K_S^0 \pi^- \pi^+) K^{\pm}$

Belle II prospects for $\varphi_3(3)$

Conclusion

Future Prospects: Belle II and Beyond

- Expect Belle II and LHCb upgrade to match each other's performance!
- $\delta(\varphi 3) < 1.6^{\circ}$ with 50 ab⁻¹ data set.
 - Modes that are good to measure at Belle II
 - J • $D^{*0} \rightarrow D^0 \pi^0, D^0 \gamma$

•
$$D^0 \to K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^- \pi^0$$

- with Belle II strength
 - high statistics
 - better neutral reconstruction
 - better continuum suppression
- LHCb will clearly have more precise results in fully-charged final states.

Fit extrapolated to 50 ab⁻¹ for a SM-like scenario from Belle II physics book (10.1093/ptep/ptz106)

- Belle II aims to provide 50 ab⁻¹ at $\Upsilon(4S)$ within its runtime (Belle: ~1 ab⁻¹).
- Measurements of the Belle II will test CKM unitarity with 1% precision.
- Significant improvement of $|V_{ub}|$ and φ_3 at Belle II.
- φ_3 precision better than $\varphi_3 < 1.6^\circ$ (combined all approaches).
- Most relevant contribution using CKM physics is to probe new physics.

More interesting results are coming.

