$b \rightarrow sy$ and $s\ell^+\ell^-$ at Belle II

Keisuke Yoshihara (Iowa State)

on behalf of the Belle II Collaboration

BEAUTY2020 conference (UTokyo IPMU) September 22 2020

Introduction: $b \rightarrow s\gamma$ and $b \rightarrow s\ell + \ell$

- Flavor changing neutral current (FCNC) b→s (d) transitions continue to be of great interest. These processes proceed via one-loop (penguin or box) diagrams and hence are highly suppressed in the SM
 - \rightarrow BSM observability may be enhanced due to smaller-SM background!
- $b \rightarrow s\gamma$ and $b \rightarrow s\ell^+\ell^-$ decays are theoretically and experimentally clean.

b→sγ (Radiative Penguin)

 $Br(b \rightarrow s\gamma) = (3.32 \pm 0.15) \times 10^{-4}$ Br(b $\rightarrow d\gamma$) = (9.2 ± 3.0) × 10^{-6}

b→sℓ+ℓ- (EWK Penguin)

 $Br(B \rightarrow X_s \ \ell^+\ell^-) = (1.58 \pm 0.37) \ x \ 10^{-6} \ (1 \ GeV^2 < q^2 < 6 \ GeV^2)$ $Br(B \rightarrow X_s \ \ell^+\ell^-) = (0.48 \pm 1.0) \ x \ 10^{-6} \ (q^2 > 14.4 \ GeV^2)$

* q²: dilepton invariant mass squired

Refs: PRL109.191801 (2012), PRD91(5)052004 (2015), JHEP06(2015)176, HFAG table (link)

[*] lately LHCb had an update to P'₅, the excess going down a bit but still significant, see PRL125.011802(2020)

September 22nd 2020, Keisuke Yoshihara

Theoretical framework

 Effective Hamiltonian describes the full theory at low energy (µ) in model-independent way:

$$\mathcal{H}_{\mathrm{eff}} \sim \sum_{i} C_{i}(\mu) \mathcal{O}_{i}(\mu)$$

C_i: Wilson coefficient, encode high energy contributions

O_i: local operators with different Lorentz structures

 Contributions from new physics will modify SM contributions or introduce new operators.

$$\Delta \mathcal{H}_{\text{eff}} = \frac{c_{NP}}{\Lambda_{NP}} \mathcal{O}_{NP}$$

- $b \rightarrow s\gamma$ and $b \rightarrow s\ell^+\ell^-$ are sensitive to C_7, C_9 , and C_{10}
- Combined fits with different measurements will obtain model-independent constraints on C_i and hence constrain BSM models

$$\mathcal{O}_{9} \propto (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell);$$

$$\mathcal{O}_{10} \propto (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell);$$

$$\mathcal{O}_{7} \propto m_{b}(\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}.$$

SuperKEKB and Belle II detector

- SuperKEKB (KEK, Japan) aims for collecting 50 ab⁻¹ of data, which is ~50 times larger than KEKB/Belle experiment.
- Belle II detector composed of vertex detector, drift chamber, PID counters, EM calorimeter and muon detector was designed to cope with higher background and high trigger rate ~30 kHz.

- Belle II achieved peak luminosity of 2.4 x 10³⁴/cm²/sec (old record at KEKB was 2.1x10³⁴ /cm²/sec) and integrated ~1 fb⁻¹/day on average in June 2020 (maximum 1.3 fb⁻¹/day). Total 74 fb⁻¹ data has been collected so far.
- Toward the goal of 6 x 10³⁵/cm²/sec and 50 ab⁻¹, further upgrade to detector and accelerator is planned

<u>Analysis strategy</u>

Exclusive mode:

reconstruct a specific decay channel

• Inclusive mode:

(1) **sum-of-exclusive**: reconstruct X_s from as many excl. channels as possible (2) **fully inclusive**: all possible X_s final states considered

 e^+

hadronization

Higher (~2 times) tagging efficiency at Belle II

reco. method	tagging	effi.	S/B
sum-of-exclusive	none	high	moderate
fully-inclusive	had. B	very low	very good
	SL B	very low	very good
	L	moderate	good
	none	very high	very bad

• Energy difference (ΔE) and beam constrained mass (M_{bc}) are key variables:

$$\Delta E = E_B - E_{\text{beam}} \quad M_{\text{bc}} = \sqrt{E_{\text{beam}}^2 - p_B^2} \quad \text{where} \quad E_{\text{beam}} = \frac{E_{e-} + E_{e+}}{2}$$
* in center of mass frame

$\underline{B \to X_s \gamma}$

- Inclusive measurement can be only performed at Belle II !!
- $B \rightarrow X_s \gamma$ offers strongest constraint on Wilson coefficient C_7
- For *BF*, ~6% (3.2%) precision with 5 ab⁻¹ (50 ab⁻¹) data:

- Fully inclusive (green and red): reduce systematics by better modeling neutral hadrons faking photons
- Sum-of-exclusive: increase the number of models to reduce the systematic from X_s hadronization
- Belle II sensitivity in green considering improvement in hadronic tagging

<u> $B \rightarrow X_s \gamma$ – CP and isospin observables</u>

• Three important observables, A_{CP} , ΔA_{CP} , and Δ_{0+} , are expected to be determined to < 5% (< a few %) level at 5 ab⁻¹ (50 ab⁻¹)

$$A_{\rm CP} = \frac{\Gamma\left[\bar{B} \to X_s \gamma\right] - \Gamma\left[B \to X_{\bar{s}} \gamma\right]}{\Gamma\left[\bar{B} \to X_s \gamma\right] + \Gamma\left[B \to X_{\bar{s}} \gamma\right]} \qquad \Delta_{0+} = \frac{\Gamma\left[B^0 \to X_s \gamma\right] - \Gamma\left[B^{\pm} \to X_s \gamma\right]}{\Gamma\left[B^0 \to X_s \gamma\right] + \Gamma\left[B^{\pm} \to X_s \gamma\right]}$$
$$\Delta A_{\rm CP} = A_{\rm CP} \left[B^{\pm} \to X_s^{\pm} \gamma\right] - A_{\rm CP} \left[B^0 \to X_s^0 \gamma\right] \qquad * \Delta A_{\rm CP} \sim 0 \text{ in the SM}$$

- Precision driven by sample size experimental systematic uncertainties can be reduced as well as theoretical uncertainty on hadronic form-factors.
- $A_{CP}(B \rightarrow X_{s+d}\gamma)$ is sensitive to BSM thanks to small theory unc. (while $A_{CP}(B \rightarrow X_{s}\gamma)$ has been theory unc limited)

<u>Re-discovery of radiative penguin decay</u>

- Search for $B \to K^* \gamma$ using three decays: $K^+ \pi^0 \gamma, K^0 {}_{S} \pi^+ \gamma, K^+ \pi^- \gamma$
- Dominant $q\overline{q}$ events suppressed with multivariate classifier (FastBDT)
- Combined significance more than 5σ

	Signal yield (stat. error)	Significance
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	19.2 ± 5.2	4.4σ
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	9.8 ± 3.4	3.7σ
$B^+ \to K^{*+} \big[K^0_S \pi^+ \big] \gamma$	6.6 ± 3.1	2.1σ

8 5.29

• Time dependent CPV can be measured in $B^0 \rightarrow K^*(K^0 {}_{S}\pi^0)\gamma$ channel $(b_L \rightarrow S_R\gamma_R)$

$\underline{B \rightarrow X_s \ell + \ell} - simulation study$

Belle II is capable of performing inclusive measurement!

- Higher ΔE resolution (than $X_{s\gamma}$)
- Sum-of-exclusive mode:
 - X_s reconstruction: $Kn\pi$ (n ≤ 4) and 3K
 - at most one K_{s^0} , π^0
 - ► M_{Xs} < 2.0 GeV</p>

- Background:
 - ► dominated by $B(\rightarrow X\ell v)B(\rightarrow Y\ell v)$ it can $A_{CP}^{Br(B)}$ missing energy and vertex information A_{CP}^{CP}
 - mis-ID B \rightarrow Km π to be understood

	Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II 5 ab
	$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%
	${ m Br}(B o X_s \ell^+ \ell^-) \; ([3.5, 6.0] { m GeV}^2)$	24%	11%
∇h_{i} it co	$Br(B \rightarrow X_s \ell^+ \ell^-) (> 14.4 \text{ GeV}^2)$	23%	10%
$\rightarrow 110$ — II Ca	$A_{\rm CP}(B \rightarrow X_s \ell^+ \ell^-)$ ([1.0, 3.5] GeV ²)	26%	9.7~%
x information	$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9%
X IIIOIIIIddoii	$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	8.1~%
derstood	$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7%
	$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9%
	$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ { m GeV^2})$	19%	7.3%
September 22nd 202	$\Delta_{ m CP}(A_{ m FB})\;([1.0,3.5]{ m GeV^2})$	52%	19%
	$\Delta_{\rm CD}(A_{\rm EP})$ ([3.5, 6, 0] GeV ²)	42%	16%

$\underline{B \to X_s \ell + \ell}$

- In addition to BF, A_{FB} is also an important measurement to constrain C_9 and C_{10} Smaller systematic uncertainty than exclusive mode
- Uncertainty on *BF* will be dominated by systematics at ~15 ab⁻¹, while *A_{FB}* measurement will be still statistically dominated at 50 ab⁻¹
- A_{CP} and $\Delta_{CP}(A_{FB})$ will also be measured

September 22nd 2020, Keisuke Yoshihara

<u>Angular analysis — B→K*ℓ+ℓ - at Belle II</u>

- Precise measurement of $B \to K^* \ell^+ \ell^-$ in the low-q² and high-q² at Belle II will provide important cross-check to the anomaly in $B \to K^* \mu^+ \mu^-$
- Sensitivity of ~5 ab⁻¹ of Belle II data (~2023) will be comparable to 4.7 fb⁻¹ of LHCb

<u>Lepton Flavor Universality</u>

- R_{K(*)} anomalies will be cross-checked at Belle II
 - Similar reco efficiency/purity for electron and muon
 - Sensitive to both **low-** and **high-q**²
 - In addition to $R_{K(*)}$, R_{xs} can

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$R_K \ ([1.0, 6.0] {\rm GeV}^2)$	28%	11%	3.6%
$R_K \; (> 14.4 {\rm GeV}^2)$	30%	12%	3.6%
$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%	3.2%
$R_{K^*} \ (> 14.4 {\rm GeV}^2)$	24%	9.2%	2.8%
$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%	4.0%
$R_{X_s} \ (> 14.4 {\rm GeV}^2)$	28%	11%	3.4%

 R_{I}

$\underline{Q_5 = P_5'^{\mu} - P_5'^{e}}$

S S

Observables

 -0.4^{O_5} ([1.0, 2.5] GeV²)

 $Q_5 \ (> 14.2 \, {
m GeV}^2)^2$

 $([2.5, 4.0] \, \mathrm{GeV}^2)$

 $Q_{5}([4.0, 6.0] \,\mathrm{GeV}^2)$ 10

 a^2 (GeV²)

• Further lepton universality test can be performed by looking at other observables such as Q_5 (or ΔA_{FB}) in $B \rightarrow K^* \ell^+ \ell^-$ channel

$$Q_{i} = P_{i}^{\mu} - P_{i}^{e}$$

$$\Delta_{A_{FB}} = A_{FB}(B \to K^{*}\mu^{+}\mu^{-}) - A_{FB}(B \to K^{*}e^{+}e^{-})$$

$$A_{FB}^{\bullet} = A_{FB}(B \to K^{*}\mu^{+}\mu^{-}) - A_{FB}(B \to K^{*}e^{+}e^{-})$$

$$Belle II will be able to measure it with much higher accuracy
$$C_{9\mu}^{NP} = -1.11$$$$

Belle $0.71 \,\mathrm{ab}^{-1}$

0.47

0.42

0.34

0.23

 $q^2 \left[\text{GeV}^2/\text{c}^2 \right]$

 $q^{-}|\text{GeV}^{-}/\text{C}^{-}|$

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

SM from DHMV NP Example

5

 Q_5

Belle II 50 ab⁻¹

0.054

0.049

0.040

0.027

BelleII $5 \text{ ab}^{=1}$

0.17

0.15

0.12

0.088

[ab⁻¹]

$\underline{B \to K^{(*)} v \bar{v}}$

 Theoretically and experimentally cleaner than b→sℓ+ℓ- thanks to no photon mediated contribution

$\underline{B \to K^{(*)} v \bar{v}}$

 Since there're two neutrinos in the final state, the other B meson needs to be fully reconstructed (Full Event Interpretation*)

— hadronic (low eff) and semi-leptonic(higher eff) tagging

 Distributions of missing 4-momentum in the CM frame with hadronic tag. Bkg norm corresponds to 1 ab⁻¹, while the signal norm arbitrary.

Ref: [*] <u>10.1007/s41781-019-0021-8</u>

$B \rightarrow K^{(*)} v \bar{v}$

- In addition to BF, fraction of longitudinal polarization (F_L) is sensitive to BSM
- Full Belle II sensitivity to F_L (~0.47 ± 0.03 in SM) is about 0.08 for $K^{*0/+}v\overline{v}$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\operatorname{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${\rm Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077

Constraint on Wilson coefficients: C_R and C_L^{NP}

bservables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$(D \mid U \mid -)$	15004	2007	1107

<u>Summary</u>

- Belle II has been running well collectin COVID19 pandemic.
- Many interesting results $(B \rightarrow X_s \gamma, B \rightarrow)$ the area of radiative and EWK penguir

1.0

Integrated luminosity

80

Backup

December 9th 2019, Keisuke Yoshihara

Interplay between incl. and excl.

- Hadronic uncertainties in the inclusive and exclusive measurements are independent, and hence the difference between the two may be explained by these uncertainties (e.g. charm loop contribution)
- Belle II is capable of doing both measurements!

<u>TCPV in K* (K_sπ⁰)γ</u>

• In the SM, γ is mostly left-handed and right-handed γ is suppressed by $O(m_s/m_b)$.

$$|S_{CP}| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \sim \text{a few \%}$$

• However, the right-handed may be induced by BSM effect and mix with the lefthanded. If the hadronic system is in CP eigenstate, large TCPV can be seen

b

b

S

Sensitivity of $B \rightarrow X_s \ell + \ell$

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7~%	3.1~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9~%	2.6~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	21%	8.1~%	2.6~%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV^2})$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV^2})$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV}^2)$	19%	7.3%	2.4%
$\Delta_{ m CP}(A_{ m FB})~([1.0, 3.5]{ m GeV^2})$	52%	19%	6.1%
$\Delta_{ m CP}(A_{ m FB})~([3.5, 6.0]{ m GeV^2})$	42%	16%	5.2%
$\Delta_{\rm CP}(A_{\rm FB}) \ (> 14.4 \ {\rm GeV^2})$	38%	15%	4.8%