

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

First results from Belle II.

Torben Ferber (<u>torben.ferber@desy.de</u>) on behalf of the Belle II collaboration

January 20 2020, 58. International Winter Meeting on Nuclear Physics

Overview

- B-factories
- SuperKEKB
- Belle II
- First results: 2018, 2019
- Outlook 2020

First Results and Prospects for τ lepton physics at Belle II Thomas Kraetzschmar Wednesday 18:40

Lepton Flavour Universality Violation (LFV) search τ→μμμ at Belle II Alberto Martini Friday 17:40

First results from Belle II (Torben Ferber) DESY.

B-Factories.

CKM Metrology

Hadronic cross section in e⁺e⁻ collisions

collision energy [GeV]

First results from Belle II (Torben Ferber) DESY.

Time-dependent CP violation

Identify flavour of one B: "Flavour tagging"

e.g. CP eigenstate $B \rightarrow J/\psi K_{S}^{0}$

Full event interpretation (FEI) and beam-constraint mass $m_{\mbox{\scriptsize bc}}$

Fully reconstruct one of the B mesons: **FEI**

Overconstrain second B meson: Neutrino(s) in the final state, ...

Cross section in e⁺e⁻ collisions at 10.58 GeV

1 nb cross section
→ 10⁶ events per
1 fb⁻¹ integrated
luminosity

Physics process Cross section [nb]		Cuts	
$\Upsilon(4S)$	1.05 ± 0.10	_	
$uar{u}(\gamma)$	1.61	_	
$dar{d}(\gamma)$	0.40	_	
$sar{s}(\gamma)$	0.38	_	
$c \overline{c}(\gamma)$	1.30	_	
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^{\circ} < \theta_{e's}^{*} < 170^{\circ},$	
		$E^*_{e's} > 0.15 \text{ GeV}$	
$e^+e^-(\gamma)$	74.4	e's ($p > 0.5$ GeV) in ECL	
$\gamma\gamma(\gamma)$	$4.99 \pm 0.05 \; (MC \; stat.)$	$10^{\circ} < \theta^*_{\gamma's} < 170^{\circ},$	are huge
		$E^*_{\gamma's} > 0.15 \text{ GeV}$	arenage
$\gamma\gamma(\gamma)$	3.30	γ 's ($p > 0.5 \text{GeV}$) in ECL	
$\mu^+\mu^-(\gamma)$	1.148	_	
$\mu^+\mu^-(\gamma)$	0.831	μ 's ($p > 0.5 \text{GeV}$) in CDC	
$\mu^+\mu^-\gamma(\gamma)$	0.242	μ 's ($p > 0.5 \text{GeV}$) in CDC,	
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV}) \text{ in ECL}$	
$ au^+ au^-(\gamma)$	0.919	_	B-factories are
$ uar u(\gamma)$	0.25×10^{-3}	_	t-factories

Belle and BaBar

10

Belle: KEKB e+e- collider, KEK, Tsukuba, Japan, 1999–2010

SuperKEKB.

11

KEK in Tsukuba (Japan)

First results from Belle II (Torben Ferber) DESY.

- Ultimate goal: 50ab⁻¹ (50× Belle)

SuperKEKB

Belle II

Electromagnetic calorimeter (ECL):

CsI(Tl) crystals waveform sampling (energy, time, pulse-shape)

Vertex detectors (VXD):

2 layer DEPFET pixel detectors (PXD, partially installed)4 layer double-sided silicon strip detectors (SVD)

e- (7 GeV)

Central drift chamber (CDC):

He(50%):C₂H₆ (50%), small cells, fast electronics

16

Belle II: Challenges

- resolution for the same B mixing performance
- •
- Much higher data rates require new software and computing design •

→ Belle II is a new experiment with many Belle and BaBar members

Reduced boost $\beta \gamma = 0.42$ (a) KEKB $\rightarrow \beta \gamma = 0.28$ (a) SuperKEKB requires better vertex

Much higher backgrounds require faster electronics and radiation hardness

Much higher event rates require new DAQ and multi-level trigger system

17

First results from Belle II (Torben Ferber) DESY.

First results.

Beam commissioning No vertex detectors No muon system Very loose triggers

First results from Belle II (Torben Ferber) DESY.

$L = (496.3 \pm 0.3 \pm 3.0) \, \text{pb}^{-1}$ (0.001% of final dataset)

Luminosity measurement

Calorimeter-only selection of large angle Bhabha events

Source	ee (%)	$\gamma\gamma~(\%)$	$ee + \gamma\gamma ~(\%)$
Cross section	± 0.1	± 0.1	± 0.1
CM energy	± 0.2	± 0.2	± 0.2
$\theta_{\rm cm}$ range	± 0.0	± 0.4	± 0.1
IP position	± 0.2	± 0.1	± 0.1
ECL location	± 0.2	± 0.2	± 0.2
MC statistics	± 0.1	± 0.1	± 0.1
Beam backgrounds	± 0.1	± 0.1	± 0.1
Cluster reconstruction	± 0.2	± 0.2	± 0.2
$E_{\rm cm}$ distributions	± 0.1	± 0.1	± 0.1
$\theta_{\rm lab}$ distributions	± 0.1	± 0.2	± 0.1
$\theta_{\rm cm}$ distributions	± 0.3	± 0.3	± 0.3
$\phi_{\rm cm}$ distributions	± 0.1	± 0.3	—
Material effects	-0.1	+0.7	+0.1
Overlapping clusters	± 0.1	± 0.1	± 0.1
Colliding backgrounds	± 0.1	± 0.3	± 0.1
Quadrature sum	± 0.6	$+1.1 \\ -0.8$	± 0.6

Search for an invisibly decaying Z' boson

- Search for vector boson Z' that couples to 2nd and 3rd generation only •
 - No coupling to electrons avoids strong existing Dark Photon bounds •
- Visible decays lead to four muon final state ("Muonic force") search (BaBar)
- Invisible decays to Dark Matter or neutrinos
- Possible explanation for g-2 anomaly
- First physics paper targeting publication

First results from Belle II (Torben Ferber) DESY.

Search for an invisibly decaying Z' boson

Physics runs Vertex detector Muon system Loose trigger

First results from Belle II (Torben Ferber) DESY.

$= 10.57 \, \text{fb}^{-1}$ (0.021% of final dataset) $(20 \times \text{more than } 2018)$

Ζl

Nano-beams at SuperKEKB: L > 1×10³⁴ cm⁻²s⁻¹

03.12.2019: $\beta_y^* = 0.8 \text{ mm}$ $I_{\text{LER}} = 0.52 \text{A}, I_{\text{HER}} = 0.42 \text{A}$

Vertex resolution

- Vertex fit of 2-track events (~Bhabha) selecting "good" tracks with PXD, SVD and CDC hits
- 14.1±0.1 (stat) µm resolution (x2 better than Belle)

DESY.

DESY. FIG. 1: Projection of the coordinate system on the x-y plane. For a track coming from a primary

come from the same primary vertex, the width of the difference $\Delta d_0 \equiv d_0(t_-) + d_0(t_+)$ divided by $\sqrt{2}$ is an estimate of the do resolution. In each do bin, the width of the Δd_0 distribution of selected

D° lifetime

- Powerful test of E
- TreeFitter algorith
- D*(shortlived) cor

important test of the Belle II vertexing performance.

- D^0 decay vertex from K and π daughters
- D^0 production vertex, from the crossing of π_s 's and D^0 's reconstructed momentum 2.
 - D^{*} decays immediately, in the luminous region or beam spot. Constraining the D^{*} to decay in the beam spot would significantly improve the resolution on proper time

Once the whole decay chain has been reconstructed, the decay length of the D⁰ is obtained as:

I_{dec}

and then translated into the proper time:

• T(D°) = (370±40) f:

-OB8Parameters extracted from the unbinned maximum likelihood fit to the reconstructed ime distribution.

The measurement requires the reconstruction of two vertices:

$$= (\mathbf{r}_{decay} - \mathbf{r}_{production}) \cdot \hat{\mathbf{p}}_{D}$$

 $\tau = m_{\rm D} l_{\rm dec} / c p_{\rm D}$.

Hadron Identification: Kaons and pions

- CDC, TOP (barrel) and ARICH (endcap)
- Select $D^* \rightarrow D^{\circ}(K\pi) \pi_s$ I. LIST OF APPROVED PLOTS
- Figure 1 AG (Kπ) charge via slow pion charge
 Figure 2

Details of the analysis procedure are described in BELLE2-NOTE-PFABILE-OB8P arameters extracted from the unbinned maximum likelihood fit to the recon

 $M(\mu^+\mu^-)$ (GeV/c²)

Lepton Identification: Muons and electrons

Mostly ECL (calorimeter) and KLM (muon system)

Neutral reconstruction

First results from Belle II (Torben Ferber) DESY.

B-counting

BB: R2 → 0

light quarks: R2 \rightarrow 1

BELLE2-NOTE-PL-2019-017

Full event interpretation (FEI)

First results from Belle II (Torben Ferber) DESY.

Physics with O(10fb⁻¹)

- $B \rightarrow X \ell \nu, B \rightarrow D^* \ell \nu$, semi-leptonic FEI •
- Rediscovery of $B \rightarrow \eta' K_{S}$, ΦK_{S} , $J/\Psi K_{L}$
- Rediscovery of **time-dependent CP asymmetry** in $B \rightarrow J/\Psi K_S$
- Rediscovery of Φ_3 "golden modes": $B \rightarrow D_s^*D$ and $B \rightarrow D_s^*D$ $D_s^*\pi^0$
- Rediscovery of $\mathbf{B} \rightarrow \mathbf{h}\mathbf{h}'$ and charm-less three body • decays
- Rediscovery of X(3872)
- Branching fractions in τ decays and measurement of the T mass
- $Z' \rightarrow$ Invisible with more data (and smaller systematics)

Physics with O(200fb⁻¹)

- **Exclusive** V_{ub} via $B \rightarrow \pi \ell v$, V_{cb} via $B \rightarrow D^* \ell v$
- Rediscovery $b \rightarrow sll$ and inclusive $b \rightarrow s\gamma$ •
- Time-dependent CP Asymmetry in $B \rightarrow J/\Psi K$
- Rediscovery $\mathbf{B} \rightarrow \pi^{\circ} \pi^{\circ}$ •
- Charged Z-States, Y(nS) via ISR •
- $\tau \rightarrow h\omega \nu$ and search for BSM, e.g $\tau \rightarrow l\alpha$
- Search for Long-lived particles (LLPs)
- Search for invisible Dark Photons and invisible ALPs

Search for inelastic Dark Matter (iDM)

- Search for heavy DM χ_2 decaying into light DM **X**₁ via Dark Photon mediator (5 free parameters)
 - Single photon state if χ_2 long lived or fermion pair is low mass
 - **Displaced** e⁺e⁻ vertex otherwise
- Kinematically forbidden in direct-detection searches
- Background from photon conversions
- Displaced vertex trigger needed for highest masses

arXiv:1911.03176, to appear in JHEP M. Duerr, **TF**, C. Hearty, F. Kahlhoefer, K. Schmidt-Hoberg, P. Tunney

Search for inelastic Dark Matter (iDM)

 $lpha_{
m D}=0.1,\ m_{A'}$ =

Belle II reach (50ab-1) /

$$= 3 m_{\chi_1}, \, \Delta = 0.1 \, m_{\chi_1}$$

Summary

- $L > 10^{34} \text{ cm}^{-2}\text{S}^{-1}$
- are higher than expected
- Long shutdown 2021 to install full PXD and replace TOP PMTs •
- the early running period of Belle II
- 10 fb⁻¹ done. 49990 fb⁻¹ to go.

Belle II established nano-beam scheme in 2019 and takes physics runs with

Detector performance generally as expected, but beam background levels

Searches for the direct production of low-mass new particles are a priority for

Backup.

	_

Contact

DESY.

Deutsches Elektronen Synchrotron <u>www.desy.de</u> Torben Ferber <u>torben.ferber@desy.de</u> ORCID: 0000-0002-6849-0427