Flavour measurements in the next five years (Focusing on Belle II)

Phillip Urquijo The University of Melbourne WHEPP IIT Guwahati, December 2019

Driving questions for flavour physics research

- Matter antimatter asymmetry → New sources of CP Violation
- Quark and Lepton flavour & mass hierarchy →extended gauge sector coupling to third generation (H[±], W', Z') →restored L-R symmetry
- Finite neutrino masses → LFV and LFUV.
- 19 free parameters → GUTs, **leptoquarks**
- Hidden and dark sectors at the GeV scale, may have flavour properties.

- **Leptonic and Semileptonic decays**
 - CKM matrix element magnitudes
 - Violations of lepton flavour universality

- **Direct and indirect CP violation**
 - SM Weak CP phase
 - New sources of CP violation

How to search for new phenomena in flavour transitions

WHEPP 2019

Phillip URQUIJO

• Flavour Frontier: virtual production to probe *scales* beyond energy frontier.

• Often first clues about NP e.g. weak force, c, b, t quarks.

LHC sig

standar

NEWS • 12 JANUARY 2018

Revamped collider hunts for cracks in the fundamental theory of physics

Experiment smashes electrons into positrons to search for unseen particles and overarching physics framework.

Elizabeth Gibney

earch	E-alert Submit	SUBSCRIBE		SCIENTIFIC AMERICAN _®	English 🗸	Cart 0
		THE SCIENCES MI	ND HEALTH TECH	SUSTAINABILITY EDUCA	TION VIDEO F	PODCAST
				PHYSICS		
		La	wbreak	ting Par	ticle	s N
		Poin	t to a P	revious	ly Un	ıkr
nrohle	ms with		Force	in the U	niver	:se
proble		Scientists aren'	t yet certain that Model of particle	electrons and their r e physics, but the evi	elatives are v dence is mot	/iolatin unting
				By Jesse Dunietz on July 17, 2017		
	New Scie	ntíst				
۶ PDF	HOME NEWS	TECHNOLOGY	SPACE PHYSICS	HEALTH EARTH	HUMANS	LIFE
RELATE						
Rare pa physics	Home Features	Physics				
	FEATURE 27 Apr	il 2016				
Physici anomal	That's where	odd: L all the	Inruly e antin	pengui natter v	ns hi vent	nt

Rare "penguin" particle decays should all happen at the same rate. They don't – perhaps providing a clue to why we live in a universe made of matter

Heavy flavour experiments

5 active experiments, all with strengths/weaknesses: BESIII, LHCb, **Belle II**, ATLAS, CMS.

BESIII e⁺e⁻ charm factory

Belle II B/Charm/tau factory at e⁺e⁻

WHEPP 2019

LHCb Beauty/Charm LHC detector

ATLAS, CMS General purpose LHC detectors

Belle II (a) Super-KEKB Intensity frontier flavour-factory experiment, Successor to Belle @KEKB (1999-2010)

Belle II

detector

Augusto Posto researchers
(306 grad students
(306 grad students
(a grad studen

1km

7 GeV e⁻, 4 GeV e⁺ E_{CM} Y(4S) = 10.58 GeV + scans Y(4S) → B anti-B

B + Charm + τ factory

SuperKEKB - 2019 — "Phase 3"

- New e⁺ damping ring.
- New 3 km e⁺ ring vacuum chamber.

First new collider since the LHC

Belle II Detector, 2019 commissioning of new VXU

<u>K-Long and muon detector:</u> Resistive Plate Chambers (barrel outer layers) <u>Scintillator + WLSF + SiPM's (end-caps</u>, inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling (barrel+ endcap)

Beryllium beam pipe 2cm diameter

electrons (7 GeV

Vertex Detector 1→2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics (Core element)

Nano-beams ar.

KEKB

SuperKEKB

0.0

The vertex distribution is constrained in the nano-beam scheme.

-0.2

-0.4

Ordinary collision (KEKB)

Belle case 1999 data 80 (C) 10000 20000 -10000 -20000 $Z(\mu m)$ -1.0 cm 1.0 cm

$\sigma = 4.5 \text{ mm}$

WHEPP 2019

60

40

20

 $\sigma = 550 \ \mu m$

Nano-Beam (SuperKEKB Phase2)

-0.4

-0.2

0.0

0.2

 z_0 [cm] educed x 1/10Measured in 2-track events in Belle II data with one wedge of the silicon detector.

0.4

Tiny beam size is a useful constraint for Time-dependent CPV analyses.

L4 SVD designed & built by Indian groups

Phillip URQUIJO

9

Hadron ID- Key for flavour measurement

Some results involving charged tracks and TOP particle id in Phase 3

WHEPP 2019

Phillip URQUIJO

WHEPP 2019

Phillip URQUIJO

We have rediscovered the B meson (2019 dataset)

5500 Fully reconstructed hadronic B decays

Demonstration of Belle II's B Physics Capabilities: Modes with neutrals, and K_s mesons are efficiently reconstructed along with all-charged final states containing kaons and pions.

WHEPP 2019

Phillip URQUIJO

MELBOURNE

-lavour data sets from colliders						
Experiment	∫ <i>L</i> dt: Now	∫ <i>L</i> dt: 5 years	σ(bb)	σ(cc)	σ(ss)	Opera
Babar	530 fb ⁻¹	_	1.1 nb	1.6 nb	0.4 nb	1999-2
Belle	1040 fb ⁻¹	_	1.1 nb	1.6 nb	0.4 nb	1999-2
Belle II	>0.5 fb ⁻¹ (50 ab ⁻¹)	15-20 ab-1	1.1 nb	1.6 nb	0.4 nb	201
BESIII	~16 fb ⁻¹	~30 fb ⁻¹	_	6 nb (3770 MeV)	_	200
KLOE-2	5.5 fb ⁻¹	_	_	_	~3 µb (1020 MeV)	2014-2
ATLAS	140 fb ⁻¹	~300 fb ⁻¹	250-500 µb	_	_	200
CMS	140 fb ⁻¹	~300 fb ⁻¹	250-500 µb	_	_	200
LHCb	8 fb-1	23 fb ⁻¹	250-500 µb	1200- 2400 μb	$(\sim 10^{13} \text{K}_{\text{S}} / \text{fb}^{-1})$	200

- Order of magnitude increase in e+e-Y(4S) dataset focus of this presentation.
- Advances in lattice QCD will also be crucial for improved precision tests of the SM.

....

THE UNIVERSITY OF MELBOURNE

LHCb projected datasets Upgrade I

WHEPP 2019

LHCb run 3 will have an upgraded trigger improving hadronic mode sensitivity.

CKM, the Unitarity Triangle and $CP W_u Ohation \sqrt{|V_{ud}|^2 + |V_{us}|^2}$ and $\rho + Q_{ud} Ohation \sqrt{|V_{ud}|^2 + |V_{us}|^2}$ • The SM describes the mixing of quarks $A\lambda_{of-different generations}^{cb}$ and $gh thighting = -V_{CKM} \propto \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| e^{-i\beta} & -|V_{ts}| e^{-i\beta_s} & |V_{tb}| \end{pmatrix}$ $(\overline{ ho},\overline{\eta})$ 3 Generations, 1 Phase: single $|\mathbf{v}, \mathbf{v}, \mathbf{v}|$ α β $\mathbf{v}_{td} V_{th}^*$ source of CPV in the SM. **WA HFLAV** sin2@1=0.70±0.02 $\Delta m_d \& \Delta m_s$ Wolfenstein parameterisation: $\Phi_{26} = (84.9 + 5.1_{-4.5})^{\circ}$ ε_κ **Φ**₁ Phase invariant, conserving CK $\Phi_{3} = (73.5^{+4.2}_{-5.1})^{\circ}$ matrix unitarity at any order in $\gamma = (72.1^{+5.4}_{-5.8})^{\circ}$ 0.4 $b \rightarrow u$ 0.3 $|V_{us}|^2$ 0.2 ۷۷_{ub} 0.1 β

		$B_{(s)} \rightarrow \mu + \mu$ -	V _{t{d,s}} via
$K \rightarrow \pi v anti-v$	ρ, η	$\Delta m_d, \Delta m_s$	V _{tb} V _{t{d,s}}
$B_s \rightarrow J/\psi \Phi$	βs	εκ	(ρ, η) via
$B \rightarrow J/\psi K_s$	Φ ₁	$M \rightarrow I \vee (\gamma)$	I V_{UD}I via E
$B \rightarrow D^{(*)} K^{(*)}$	Φ ₃	$B \rightarrow \pi I v / b \rightarrow u I v$	IV _{ub} I via F
$B \rightarrow \pi\pi, \rho\rho$	Φ ₂	$B \rightarrow D / v / b \rightarrow c / v$	IV _{cb} I via F

WHEPP 2019

$B \rightarrow \pi\pi, \rho\rho$	Φ2	$B \rightarrow D / v / b \rightarrow c / v$	IV _{cb} I via F
$B \rightarrow D^{(*)} K^{(*)}$	Φ ₃	$B \rightarrow \pi I v / b \rightarrow u I v$	IV _{ub} I via F
$B \rightarrow J/\psi K_s$	Φ ₁	$M \rightarrow I \vee (\gamma)$	I V_{UD}I via D
$B_s \rightarrow J/\psi \Phi$	βs	εκ	(ρ, η) via
$K \rightarrow \pi v anti-v$	ρ, η	$\Delta m_d, \Delta m_s$	V _{tb} V _{t{d,s}}
		$B_{(s)} \rightarrow \mu + \mu$ -	V _{t{d,s}} via

WHEPP 2019

Phillip URQUIJO

Form factor / OPE

Form factor / OPE

Decay constant f_M

Bĸ

via Bag factor B_{B}

Decay constant f_B

Observables with very different properties

Tree: e.g., $|V_{ub}|$, Φ3 Loop: e.g., Δm_d , Δm_s , ϵ_K , sin(2β) CP-conserving: e.g., $|V_{ub}|$, Δm_d , Δm_s CP-violating: e.g., γ, ϵ_K , sin(2β)

Exp. uncs.: e.g., α, sin(2β), γ **Syst. uncs**.: e.g., |V_{ub}|, |V_{cb}|, ε_K, Δm_d, Δm_s

$B \rightarrow \pi\pi, \rho\rho$	Φ2	$B \rightarrow D / v / b \rightarrow c / v$	IV _{cb} I via F
$B \rightarrow D^{(*)} K^{(*)}$	Φ ₃	$B \rightarrow \pi I v / b \rightarrow u I v$	I V_{ub} I via F
$B \rightarrow J/\psi K_s$	Φ ₁	$M \rightarrow I \vee (\gamma)$	I V_{UD}I via D
$B_s \rightarrow J/\psi \Phi$	βs	εκ	(ρ, η) via
$K \rightarrow \pi v anti-v$	ρ, η	$\Delta m_d, \Delta m_s$	V _{tb} V _{t{d,s}}
		$B_{(s)} \rightarrow \mu + \mu$ -	V _{t{d,s}} via

WHEPP 2019

Phillip URQUIJO

Form factor / OPE

Form factor / OPE

Decay constant f_M

Bĸ

via Bag factor B_B

Decay constant f_B

Observables with very different properties

 Tree:
 e.g., |V_{ub}|, Φ3

 Loop:
 e.g., Δm_d, Δm_s, ε_K, sin(2β)

 CP-conserving:
 e.g., |V_{ub}|, Δm_d, Δm_s

 CP-violating:
 e.g., γ, ε_K, sin(2β)

Exp. uncs.: e.g., α, sin(2β), γ **Syst. uncs**.: e.g., |V_{ub}|, |V_{cb}|, ε_K, Δm_d, Δm_s

$B \rightarrow \pi\pi, \rho\rho$	Φ2	$B \rightarrow D / v / b \rightarrow c / v$	IV _{cb} I via F
$B \rightarrow D^{(*)} K^{(*)}$	Φ ₃	$B \rightarrow \pi I v / b \rightarrow u I v$	I V_{ub} I via F
$B \rightarrow J/\psi K_s$	Φ ₁	$M \rightarrow I \vee (\gamma)$	I V_{UD}I via D
$B_s \rightarrow J/\psi \Phi$	βs	εκ	(ρ, η) via
$K \rightarrow \pi v anti-v$	ρ, η	$\Delta m_d, \Delta m_s$	V _{tb} V _{t{d,s}}
		$B_{(s)} \rightarrow \mu + \mu$ -	V _{t{d,s}} via

WHEPP 2019

Phillip URQUIJO

Form factor / OPE

Form factor / OPE

Decay constant f_M

Bĸ

via Bag factor B_{B}

Decay constant f_B

Observables with very different properties

Tree: e.g., $|V_{ub}|$, Φ3 Loop: e.g., Δm_d , Δm_s , ϵ_K , sin(2β) CP-conserving: e.g., $|V_{ub}|$, Δm_d , Δm_s CP-violating: e.g., γ, ϵ_K , sin(2β)

Exp. uncs.: e.g., α, sin(2β), γ **Syst. uncs**.: e.g., |V_{ub}|, |V_{cb}|, ε_K, Δm_d, Δm_s

Consistency among classes of observables tree level loop-induced

 \mathcal{CP} -conserving

 $\mathcal{CP}-violating$

Overall results from 2018

WHEPP 2019

Global fit remains excellent: **ICHEP'16**: p-value ~ 21% (1.3 σ) \rightarrow **CKM'18**: p-value ~ 51% (0.7σ)

> $A = 0.8403^{+0.0056}_{-0.0201}$ (2% unc.) $\lambda = 0.224747^{+0.000254}_{-0.00059}$ (0.07% unc.) $\bar{\rho} = 0.1577^{+0.0096}_{-0.0074}$ (5% unc.) $\bar{\eta} = 0.3493^{+0.0095}_{-0.0071}$ (2% unc.) 68% C.L. intervals

2.0

Phillip URQUIJO

Determination of UT sides

CKM matrix elements, Ru ~ |Vub|/|Vcb|

- 3-ways to measure |V_{CKM}| with leptonic and semileptonic decays
- **Leptonic**: decay constant from LQCD

$$\Gamma(B \to \ell_1 \ell_2) = \frac{M_B}{4\pi} |G|^2 f_B^2 \zeta_{12} \frac{\lambda_{12}^{1/2}}{M_B^2} \qquad G = \frac{G}{\sqrt{2}}$$

Exclusive semileptonic: form factor parameterisation with normalisation from LQCD or Light Cone Sum Rules

Inclusive semileptonic: Heavy quark symme the full rate, described by heavy quark expansion $\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 [[1 + A_{ew}] A_{nor}]$

WHEPP 2019

$$\frac{F}{2}V_{ub},$$

$$(m_{\nu_\ell} \to 0)$$

$$_{npert}A_{pert}]$$

$$\lambda_{12} = (M_B^2 - m_1^2 - m_2^2)^2 \underbrace{\underbrace{}_{\mathbf{\lambda}}}_{\mathbf{\lambda}_2} 4$$

$$\zeta_{12} = m_1^2 + m_2^2 - \frac{(m_1^2 - \mathbf{m}_2^2)^2}{M_B^2}$$

$$\beta_{12} = 1 - \frac{m_1^2 + m_2^2}{q^2} - \frac{\lambda_{12}}{q^2}$$

Status and prospects, Ru ~ Vub/Vcb

- Current precision: 2% for |V_{cb}|, 5-6% for |V_{ub}|,
 but sizeable tension between exclusive and inclusive.
- Belle II should fully resolve this tension within 5 years (inclusive, exclusive, leptonic), combined with LQCD improvements.

	Belle
V _{ub} exclusive (tagged)	$(3.8 \oplus 7.0)\%$
V _{ub} exclusive (untagged)	$(2.7 \oplus 7.0)\%$
V _{ub} inclusive	$(6.0 \oplus 2.5$ -4.5)

WHEPP 2019

Phillip URQUIJO

Observation of $B \rightarrow D^* | v$ at Belle II

 $D^{*+}\mu^{-}\overline{\nu}_{\mu}$

(0.53 000

Signals for $B \rightarrow D^{*+} l^- v$, $D^{*+} \rightarrow D^0 \pi^+ using \cos\theta_{BD^*l} variable$ Clear signals are found in both the electron and muon modes.

Cosine of the angle between the B flight direction and the direction of the (D*l) system (Y):

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - m_Y^2}{2p_B^* p_Y^*}$$

Phillip URQUIJO

submitted to PRD

submitted to PRD

WHEPP 2019

Mixing measurements, Rt ~ |Vtd|/|Vts|

- Derived from the B anti-B oscillation frequencies Δm_d/Δm_s (bleebs dominated) [MeV] (systematics cancel in the ratio); 188(3) **B**⁰
- 188(1.5)Measurements close to systematics dominated,: focus is on Lattice QCD, which 8(2.4) computes the relevant had now oqua htities (0.60)
- 188(2.0)Some tension with CKM fit emerging!

LQCD projections on mixing input, Belle II Physics book

N_{f}	forecast	$f_B \sqrt{B_B^{(1)}}$
	current (2017)	169(8)
	5 yr w/o EM	169(4.0)
2+1	5 yr w/ EM	169(4.3)
	10 yr w/o EM	169(1.6)
	10 yr w/ EM	169(2.3)

WHEPP 2019

Phillip URQUIJO

B mixing at Belle II

Start with a B⁰ (wait a while, ~a few x 10⁻¹² sec). Belle II VXD capabilities for CP violation.

The leptons may come from the B weak decay or (primed case) from a cascade decay $B \rightarrow D \rightarrow l \nu$ decay. WHEPP 2019 Phillip URQUIJO 27

WHEPP 2019

	Result (ps ⁻¹)	Dataset	Reference
	$0.511 \pm 0.007 \pm 0.007$	81 fb ⁻¹	BaBar: Phys. Rev. D73 (2006) 0
Δm_{1}	$0.511 \pm 0.005 \pm 0.006$	140 fb ⁻¹	Belle: Phys. Rev. D71 (2005) 07
d	$0.5050 \pm 0.0021 \pm 0.0010$	3.0 fb ⁻¹	LHCb: Eur. Phys. J C76 (2016)
Δm_s	$17.768 \pm 0.023 \pm 0.006$	1.0 fb ⁻¹	LHCb: New J. Phys. 15 (2013) C

WHEPP 2019

Determination of UT angles & CPV in Hadronic Decays

Time dependent CP Violation (mixing+decay)

Phillip URQUIJO

Track impact parameter resolution Track

VXD resolution in impact parameter ~14 microns half that of Belle.

Key for time dependent CP violation measurement.

 $|\mathbf{d}_0|$

≜у

Φ_1/β (phase of V_{td}) with $B \rightarrow J/\psi K_S$

WHEPP 2019

$S_{CP} < 2 \sigma$ from SM UT fit

0.691±0.017 WA HFLAV **0.738** +0.030_{-0.027} **Indirect CKMFitter**

Phillip URQUIJO

Time dependent CP Violation / Targets

- Improving on $sin2\Phi_1$ will be a challenge:
 - for **experiments**: soon the measurement will be systematics limited: need to control them;
 - for **theory**: so far neglected the contributions from suppressed amplitudes carrying a different phase.
- TD CP violation measurements of $b \rightarrow qqs$ transitions (q = u, d, s) are a major target

ar)	(iv: 1808.1056	67 WA (2017)	5 a	b^{-1}	50 a
	Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$
	$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052
	ϕK^0	0.12	0.14	0.048	0.035	0.020
	$\eta' K^0$	0.06	0.04	0.032	0.020	0.015
	ωK^0_S	0.21	0.14	0.08	0.06	0.024
	$K^0_S\pi^0\gamma$	0.20	0.12	0.10	0.07	0.031
	$K^0_S \pi^0$	0.17	0.10	0.09	0.06	0.028

WHEPP 2019

Signals for $B \rightarrow J/\psi X$ in Phase 3 data

Clear signals for $B \rightarrow J/\psi$ X in ~1/4 of Phase 3 data. Note small radiative tail on the di-electrons (includes bremsstrahlung recovery). Belle II has equally strong capabilities for electrons and muons.

WHEPP 2019

WHEPP 2019

Time dependent CP Violation prospects

- 1. UT angles errors ~3x reduction within 5 ye
- Searches for new phases in b→s gluon and E penguins will hit few % precision.

(phase of V_{td}) - $B \rightarrow \eta' K_S$ - gluonic penguin

WHEPP 2019

		Current	50 al
ears.			projec
	ϕ_1 :		
EW	Experimental:	0.7°	0.2
	Theoretical - QCDF & pQCD	0.1°	0.1
	Theoretical - $SU(3)$	1.7°	0.8
	ϕ_2 :		
	Experimental:	4.2°	0.6
	Theoretical:	1.2°	< 1.
			◆ ◆ ↓ ↓ ↓
		. .	
OWN DNTHS/YR		J/ ψ Κ _ (S	= 0.70)
mproved K	-0.4	η' Κ _s (S	= 0.55)

-10

Phillip URQUIJO

2023

2024

2022

37

0

-5

Direct CP Violation, Φ_3

 $\Phi_{1,2}$ rely on $\Delta F=2$ (mixing+decay), but we can also use $\Delta F=1$ (direct) as a precise probe

For CPV A₁ and A₂ need to have **different weak phases** Φ and different **CP invariant (e.g. strong) phases** δ . To measure Φ you need to know δ , and ratio of amplitudes e.g. in γ/Φ_3 measurements the relative strength of V_{ub} and V_{cb} processes and colour suppression.

Phillip URQUIJO

Φ_3/γ (phase of V_{ub}) Determination

Theory is "pristine" in these approaches, << 1% on Φ_3

$$r_B = \frac{|A_{\text{suppressed}}|}{|A_{\text{favoured}}|} \approx \frac{V_{ub}V_{cs}^*}{V_{cb}V_{us}^*} \times \text{[colour supp.]}$$

Relative weak phase is Φ_3 , Relative strong phase is δ_R

A dream of Belle & Babar: difficult due to Vub and colour suppression. Many Direct CPV techniques developed at the B-factories.

3 D^o mode categories: • D_{CP}, CP eigenstates [GLW] D^0 • D_{sup}, Doubly cabibbo suppressed [ADS] • 3-Body [GGSZ] K^{-} \mathcal{U} (71.1 +4.6_{-5.3})° $\gamma \equiv \Phi_3$ **Suppressed** HFLAV CKM 2018 0.8= 0.1 - 0.20.6 0.4 0.2 0. 50

Phillip URQUIJO

Φ₃ at Belle II

- Most sensitive method: GGSZ(*) analysis of the D⁰ \rightarrow K_s $\pi^+\pi^-$ Dalitz Plot, exploits large strong phases across the plane to enhance the sensitivity;
- Systematics overcome with model independent **DP**, with strong phase from BESIII; Enhanced by including K+K-K_S, $K_{S}\pi^{+}\pi^{-}\pi^{0}$, $K\pi^{+}\pi^{-}\& D^{*0} \rightarrow D^{0}\gamma$ and $D^{*0} \rightarrow D^{0}\pi^{0}$ modes.

No PID

0.15

THE UNIVERSITY OF **MELBOURNE**

Belle II 50 ab⁻¹

- Note: to get this far we rely on LQCD to make big advances in form factors, bag factors etc.

SM-like

New-physics

NP in B_d mixing: Fit results

$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right)$$

 $\sigma = \arg(C_{ij}\lambda_{ij}^{t*})$ Stage II: similar sensitivity to gluino masses explored at LHC 14TeV

• at 95% NP \leq (many × SM) \implies NP \leq (0.3 × SM) \implies NP \leq (0.05 × SM)

Phillip URQUIJO

0.5

0.4

0.3

0.2

0.1

[]] 0.0

Beyond the Standard Model and Anomalies

Flavour physics anomalies

Table from S. Descotes-Genon

WHEPP 2019

Belle II STRATEGY: Improved ν reco / novel B-tagging, improved lepton identification (from τ).

Lepton flavour universality

WHEPP 2019

Experimentally good for leptonic decays to an accuracy much better than 1%.

Now can access the 3rd generation of leptons and coupling to quarks!

The only SM differences are are due to masses - easy* to calculate!

Any further difference would imply non-SM interaction.

Lepton reconstruction non-universality

- detectors, no strong interactions
- daughters are lost e.g. K_L , π^0 .

Phillip URQUIJO

R(D) and R(D*) Tree anomalies

Belle

LHCb

 $B \rightarrow D^* l v$, $R(e/\mu)$ by Belle agrees with SM at 3% precision. WHEPP 2019 Phillip URQUIJO

- **2018** World Average 4σ from the SM

Belle, Phys. Rev. D 100, 052007 (2019)

WHEPP 2019

The separation of semileptonic B decays from BBbackgrounds is very challenging because they result in one

WHEPP 2019

Phillip URQUIJO

$B \rightarrow D^{(*)} T v (a) Belle II$

- R(D/D^{*}) stat limited: Belle II should confirm/ deny anomaly with 5 ab⁻¹.(3-4x error reduction in 5 years)
- **Determine the type of mediator by** analysis of kinematic spectra > 5 ab⁻¹

WHEPP 2019

$B \rightarrow D^{(*)} T v (a) Belle II$

- R(D/D^{*}) stat limited: Belle II should confirm/ deny anomaly with 5 ab⁻¹.(3-4x error reduction in 5 years)
- **Determine the type of mediator by** analysis of kinematic spectra > 5 ab⁻¹

Events (arbitrary units)

R(K*) LFUV Loop anomalies

$$R_{K^{(*)}}(q^2) = \frac{BF(B \rightarrow K^{(*)}\mu^+\mu^-)}{BF(B \rightarrow K^{(*)}e^+e^-)}$$

Deviations from SM observed, primarily claimed by LHCb. $R_{K^*} \sim 2.1\sigma$ (low bin), 2.5 σ (central bin)

WHEPP 2019

Belle, arXiv:1904.02440 LHCb, JHEP 08(2017) 055

Standard model decay Possible new decay Neutral weak Possible new force boson, Z particle, Z' Muon, µ⁺ Charged weak Antimuon, µ⁻ force boson, Wb b đ đ đ B meson B meson K meson Strange quark Top quark O Anti-down guark Bottom quark 2.0 Belle, Belle (LHCb, Babar) $B^0 \rightarrow K^{*0}e^+e^$ $q^2 = M^2(l^+l^-)$ 1.5 $^{*} U_{K^{*}}$ $B \rightarrow He^+e^-$ Data 0.5 LHCb $_{0}H = K, K^{*}, X_{s}, \dots$ 5.28 BaBar 0.0 10 15 5 $q^2 \; ({ m GeV}^2/c^2)$ ^{5.28} M_{bc} (GeV/c²) 5.24 5.26

Phillip URQUIJO

R(K) Loop anomalies

 MeV/c^2 2 Candidates

 MeV/c^2) Candidates

P5' Anomalies

- Deviations from SM also claimed in folded angular observables.
- Anomaly claimed by LHCb analysis.
 - Theoretically affected by charm loop effect.
 - About ~ 4σ deviation q²=[4,8]GeV²

In 2022, Belle II can reach current LHCb sensitivity and add neutral & inclusive modes.

WHEPP 2019

! II Prospects

\mathbf{es}	
0.	10
0.	18
0.	14
0.	11
0.	07

Belle II should refute/confirm deviations observed by LHCb within 5 years.

Large program of radiative decays CP violation -New sources of CP violation in $B \rightarrow K^*\gamma$, $\rho\gamma$ could reveal right handed currents.

oservables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$(B \to K^{*+} \nu \overline{\nu})$	$< 40 \times 10^{-6}$	25%	9%
$(B \to K^+ \nu \overline{\nu})$	$<19\times10^{-6}$	30%	11%
$_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ \text{GeV}^2/c^4)$	26%	10%	3%
$r(B \to K^+ \mu^+ \mu^-) / Br(B \to K^+ e^+ e^-)$	28%	11%	4%
$< q^2 < 6 \mathrm{GeV}^2/c^4)$			
$r(B \to K^{*+}(892)\mu^+\mu^-)/Br(B \to 0)$	24%	9%	3%
$^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ \mathrm{GeV}^2/c^4)$			
$(B_s \to \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	_
$(B_s \to \tau \tau) \ [10^{-3}]$		< 0.8	
		T	HE UNIVERSITY O

55

Phillip URQUIJO

MELBOURNE

Belle II's 1st penguin: Observer 5,23 5,24 5,26 5,27 5 f B → K* γ

Yields consistent with WA branching fraction

~1/4 of the Phase 3 dataset **B→K_sπ⁰ γ is the target for TDCPV analysis**

WHEPP 2019

Belle II Milestones in the next 5 years (B-physics oriented)

Modes highlighted as golden in the B2TiP (Belle II Physics) book (non exhaustive).			6	SL	Br(B→τν)	21%	9		
				SL	Br(B →μν)	2σ	>		
					SL	Br(B \rightarrow Xu l v) inclusive d Γ /dMx for V _{ub}	9%	4	
E. Kou, PU et al. arXiv: 1808.10567 Accepted to PTEP, printing in December			EWP		R(K) e.g. 1 <q<sup>2<6 GeV/c²</q<sup>	28%	11		
			EWP		R(K*) e.g. 1 <q<sup>2<6 GeV/c²</q<sup>	26%	10		
[ab-1] Group Channel	Current precision (Belle)	Precision		EWP	P(5') in B \rightarrow K [*] l+l- e.g. 4 <q<sup>2<6 GeV/c²</q<sup>	0.34	0.		
				TDCPV	S _{CP} (B→η' KS)	0.08	0.		
				TDCPV	S _{CP} (B→K [*] γ)	0.32	0.		
LOWM	$ee \rightarrow A' \gamma, A' \rightarrow invisible$	_	Unique		HAD	ФЗ (В→DK)	15 deg	5 c	
LOWM	$ee \rightarrow a' \gamma, a' \rightarrow \gamma \gamma$	_	Unique	15	EWP	Br(B \rightarrow X _s l ⁺ l ⁻), e.g. 3.5 <q<sup>2<6 GeV/c²</q<sup>	24%	8	
LOWM	ee \rightarrow Z' $\mu\mu$, Z' \rightarrow invisible		Unique		TDCPV	$S_{CP}(B \rightarrow \rho \gamma)$	60	1	
LOWM	ee→ MM	-	Unique		TDCPV	$S_{CP}(B \rightarrow J/\psi \pi^0)$	0.22	0.	
SL	R(B→D [*] τν)	0.02	0.012		HAD	$A_{CP}(B \rightarrow K_S \pi^0)$	0.15	0.	
SL	R(B→Dτν)	0.07 (0.04)	0.035 (0.024)	<mark>20+</mark>	EWP	Br(B→K ν ν)	~100%	11	
SL V _{ub} (B→π l ν) +LQCD improve	V _{ub} (Β→π l ν)	5% S	2.5%		EWP	Br(B→K [*] ν ν)	~100%	10	
	+LQCD improvements				EWP	$Br(B_s \rightarrow \gamma \gamma)$	< 8.7 10-6	0.3	
TDCPV	$S_{CP}(B \rightarrow J/\psi K_S)$	0.023	0.012		TDCPV	$S_{CP}(B \rightarrow \pi^0 \pi^0)$	-	0.	
	Codes helle II elle II Acc Acc Acc Acc Acc Acc Acc Acc Acc A	odes highlighted as gold elle II Physics) book (ndE. Kou, PU et al. arXiv: Accepted to PTEP, printinGroupChannelLOWMee> A' γ , A'> invisibleLOWMee> a' γ , a' $\Rightarrow \gamma \gamma$ LOWMee> Z' $\mu\mu$, Z'> invisibleLOWMee> MMSLR(B \Rightarrow D * $\tau\nu$)SLR(B \Rightarrow D $\tau\nu$)SL V_{ub} (B $\Rightarrow\pi$ l ν) +LQCD improvementsTDCPVScP(B \Rightarrow J/ ψ Ks)	odes highlighted as golden in the elle II Physics) book (non exhaus E. Kou, PU et al. arXiv: 1808.1056 Accepted to PTEP, printing in Decem GroupChannelCurrent precision (Belle)LOWM $ee \rightarrow A' \gamma, A' \rightarrow invisible$ -LOWM $ee \rightarrow A' \gamma, a' \rightarrow \gamma \gamma$ -LOWM $ee \rightarrow T' \mu \mu, Z' \rightarrow invisible$ -LOWM $ee \rightarrow MM$ -SL $R(B \rightarrow D^* \tau v)$ 0.02SL $R(B \rightarrow D \tau v)$ 0.07 (0.04)SL $ V_{ub} (B \rightarrow \pi l v)$ $+ LQCD improvements5%TDCPVS_{CP}(B \rightarrow J/\Psi K_S)0.023$	Decision bighlighted as golden in the B2TiP elle II Physics) book (non exhaustive).E. Kou, PU et al. arXiv: 1808.10567 Accepted to PTEP, printing in DecemberGroupChannelCurrent precision (Belle)Precision UniqueLOWM $ee \rightarrow A' \gamma, A' \Rightarrow invisible$ -UniqueLOWM $ee \rightarrow MM$ -UniqueLOWM $ee \rightarrow MM$ -UniqueSL $R(B \Rightarrow D^{T}v)$ 0.020.012SL $[V_{ub} (B \Rightarrow \pi l v) + LQCD improvements]$ 5%2.5%TDCPV $S_{CP}(B \Rightarrow J/\Psi K_S)$ 0.0230.012	Ges highlighted as golden in the B2TiP elle II Physics) book (non exhaustive).6Low, PU et al. arXiv: 1808.10567 Accepted to PTEP, printing in DecemberGroupChannelCurrent precision (Belle)PrecisionLOWM $e \Rightarrow A' \gamma, A' \Rightarrow invisible$ -UniqueLOWM $e \Rightarrow MM$ -UniqueLOWM $e \Rightarrow T' \mu \mu, Z' \Rightarrow invisible$ -UniqueSL $R(B \Rightarrow D \tau v)$ 0.020.012SL $R(B \Rightarrow D \tau v)$ 0.07 (0.04)0.035 (0.024)SL $V_{ub} (B \Rightarrow \pi l v)$ $+LQCD improvements5%2.5%TDCPVS_{CP}(B \Rightarrow J/\psi K_S)0.0230.012$	6 SL elle II Physics) book (non exhaustive). SL E. Kou, PU et al. arXiv: 1808.10567 SL Accepted to PTEP, printing in December EWP Group Channel Precision (Belle) LOWM ee+ A' γ, A' → invisible Precision (Belle) Precision LOWM ee+ A' γ, A' → invisible Unique SL R(B+DTv) 0.022 0.012 SL Vub (B+π I v) +LQCD improvements 5% 2.5% TDCPV UN EWP TDCPV 0.023 0.012	SLSLBr(B \rightarrow TV)SLBr(B \rightarrow TV)ChannelCurrent precision precision (Belle)Precision (Belle)Precision (Belle)Precision (Belle)COUNT Recision Precision (Belle)Precision (Bell	6 SL <th colspan<="" td=""></th>	

WHEPP 2019

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow K \nu \nu$, $\mu \nu$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2028.

Observable

CKM precision, new physics in (sin $2\beta/\phi_1$ (B $\rightarrow J/\psi K_S$)

 γ/ϕ_3 α/ϕ_2 $|V_{ub}|$ (Belle) or $|V_{ub}|/|V_{cb}|$ (LHCb) ϕ_{s} $S_{CP}(B \rightarrow \eta' K_{S}, gluonic penguin)$ $A_{\rm CP}({\rm B} \rightarrow {\rm K}_{\rm S} \pi^0)$ New physics in radiative & EW $S_{CP}(B_d \rightarrow K^* \gamma)$ $R(B \rightarrow K^* l^+ l^-) (1 \le q^2 \le 6 \text{ GeV}^2/c^2)$ $R(B \rightarrow D^* \tau v)$ $Br(B \rightarrow \tau v), Br(B \rightarrow K^* vv)$ $Br(B_d \rightarrow \mu \mu)$ <u>Charm and τ </u> $\Delta A_{\rm CP}({\rm KK}-\pi\pi)$ $A_{\rm CP}({\rm D}{\rightarrow}\pi^+\pi^0)$ $Br(\tau \rightarrow e \gamma)$ $Br(\tau \rightarrow \mu \mu \mu)$

arXiv: 1808.08865 (Physics case for LHCb upgrade II), 1808.10567 (Belle II Physics Book)

Belle II

Current Belle/ Babar	Current LHCb	Belle II (50 ab ⁻¹)	LHCb (23 fb ⁻¹)	Belle II Upgrade (250 ab ⁻¹)	L upg (30
CP Violation					
0.03	0.04	0.005	0.011	0.002	
13°	5.4°	1.5°	1.5°	0.4°	
4°	—	0.6°	—	0.3°	
4.5%	6%	1%	3%	<1%	
_	49 mrad	_	14 mrad	_	
0.08	Ο	0.015	О	0.007	
0.15	_	0.04	_	0.02	
Penguins, LFUV					
0.32	Ο	0.035	0	0.015	
0.24	0.1	0.03	0.03	0.01	
6.4%	10%	1.5%	3%	<1%	
24%, –	—	4%, 9%	—	1.7%, 4%	
—	90%		34%	—	
—	8.5×10-4	5.4×10-4	1.7×10^{-4}	2×10-4	
1.2%	—	0.2%	—	0.1%	
<120×10-9	—	<12×10-9	—	<5×10-9	
<21×10-9	<46×10-9	<3×10-9	<16×10-9	<0.3×10-9	

Phillip URQUIJO

○ Possible in similar channels, lower precision
– Not competitive.

Conclusions

- ~3x at least within 5 years: results from Belle II, LHCb, BESIII, LQCD.
 - Most powerful tests will continue to be statistics limited, clean theoretically and systematically.
 - Many more BSM CPV searches to greatly improve with upgraded detectors + datasets (Belle II, LHCb), such as gluonic ($B \rightarrow \eta' K_S$) and EW penguin ($B \rightarrow \rho \gamma$).
- LFUV in leptonic and semileptonic theoretically clean but NOT always experimentally **clean.** Material mapping, hermetic coverage, and lepton universality in triggering and DETECTION is critical. Belle II has a major role in next 5 years.
- Belle II: First physics run in Super B Factory mode (Phase 3) began March 2019. Integrated ~10 fb⁻¹, 10³⁴ /cm²/s exceeded. 5 year prospects are very promising on CP violation, UT precision tests and LFUV anomalies.

• CKM UT angles (CP violating) and sides (CP conserving) to improve everywhere by factor

Roadmap

• Most powerful tests will continue to be statistics limited, clean theoretically and systematically. x10³⁵

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047

The Belle II Physics Book

E. Kou^{73,¶,†}, P. Urquijo^{141,§,†}, W. Altmannshofer^{131,¶}, F. Beaujean^{77,¶}, G. Bell^{118,¶}, M. Beneke^{110,¶}, I. I. Bigi^{144,¶}, F. Bishara^{146,16,¶}, M. Blanke^{48,49,¶}, C. Bobeth^{109,110,¶}, M. Bona¹⁴⁸ J. Buras^{111,¶}.

H. Y. Chen

Belle II Physics Ultimate Precision, 50 ab⁻¹

Observables	Expect	ed the. accu-	Expected	Facility (2025)					
	racy		exp. uncertainty						
UT angles & sides									
ϕ_1 [°]	***		0.4	Belle II					
ϕ_2 [°]	**	СИМ	1.0	Belle II					
ϕ_3 [°]	***	CNM	1.0	LHCb/Belle II					
$ V_{cb} $ incl.	***		1%	Belle II					
$ V_{cb} $ excl.	***		1.5%	Belle II					
$ V_{ub} $ incl.	**		3%	Belle II					
$ V_{ub} $ excl.	**		2%	Belle II/LHCb					
CPV					Radiative & EW Penguins				
$S(B \to \phi K^0)$	***		0.02	Belle II	$\mathcal{B}(B \to X_s \gamma)$	**		4%	Belle II
$S(B \to \eta' K^0)$	***	CPV	0.01	Belle II	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$	***		0.005	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***		4	Belle II	$S(B \to K_S^0 \pi^0 \gamma)$	***		0.03	Belle II
$\mathcal{A}(B \to K^+ \pi^-) \ [10^{-2}]$	***		0.20	LHCb/Belle II	$S(B o ho \gamma)$	**	EWP	0.07	Belle II
(Semi-)leptonic					$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**		0.3	Belle II
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**		3%	Belle II	$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***		15%	Belle II
$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	**	CI	7%	Belle II	$\mathcal{B}(B \to K \nu \overline{\nu}) \ [10^{-6}]$	***		20%	Belle II
$R(B \to D\tau\nu)$	***	SL	3%	Belle II	$R(B \to K^* \ell \ell)$	***		0.03	Belle II
$R(B \to D^* \tau \nu)$	***		2%	Belle II/LHCb	Charm				
				,	$\mathcal{B}(D_s o \mu u)$	***		0.9%	Belle II
					$\mathcal{B}(D_s \to \tau \nu)$	***	D	2%	Belle II
					$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**		0.03	Belle II
					$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***		0.03	Belle II
					$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	***		4	Belle II
					Tau				
					$\tau \to \mu \gamma \ [10^{-10}]$	***	_	< 50	Belle II
					$\tau \to e\gamma [10^{-10}]$	***	τ	< 100	Belle II
					$\tau \to \mu \mu \mu \ [10^{-10}]$	***		< 3	Belle II,

Phillip URQUIJO

Dark Sector, expected sensitivity

Leptophilic Dark Z'

triggering, more bandwidth.

Belle II First Physics. A novel result on the dark sector $(Z' \rightarrow nothing)$ recoiling against $\mu - \mu$ or $e - \mu$ pair. Both possibilities are poorly constrained at low Z' mass and in the first case, could explain μ g-2 anomaly.

Also examine a lepton flavour violating NP signature in the dark sector

THE UNIVERSITY OF **MELBOURNE**