

Leptonic and Semileptonic B Decays at Belle II

Andreas Warburton McGill University

Lake Louise Winter Institute Fundamental Interactions in Particle Physics

LLWI 2020 February 9 – 15, 2020

https://belle2.jp

Feb 11, 2020

Belle II

LLWI 2020

McGill Belle II Collaboration

113 Institutes in 26 Countries

~1000 Collaborators (including ~300 Students)

Canadian Belle II Group: 18 members (including 8 students, 3 postdocs)

WINIVERSITY

Feb 11, 2020

Belle II

LLWI 2020

University

of Victoria

The second secon

New upgraded facility to search for BSM physics: B, τ , charm branching fractions to $O(10^{-9})$

SuperKEKB accelerator upgrade targets: Luminosity 8 x 10³⁵ cm⁻²s⁻¹ [KEKB x 40] Integrating to 50 ab⁻¹ of collision data [BaBar + Belle] x 30

Belle II Detector

- All new inner-tracking systems, front-end electronics, software, distributed computing
- New PID functionality

McGill

Belle II Program

Experiment commissioning in three phases:

McGill

- First colliding beam data recorded Spring 2018: "Phase 2", without full vertex detectors; 0.5 fb⁻¹ data recorded
- Phase 3 commenced 2019, with vertex detectors installed: physics run; >10 fb⁻¹ of data recorded so far
- Run continuing to Summer 2020: anticipate ~100 150 fb⁻¹
- Focus is on commissioning of SuperKEKB accelerator and Belle II detector
- First physics analyses: accessible with modest integrated luminosity, "rediscovery"

Belle II LI

LLWI 2020

Andreas Warburton

5

McGill (Semi)Leptonic Decays

- Instrumental for determining Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix elements
- Improved theoretical tractability over fully hadronic decays, due to reduced influence of QCD
- Sensitive probes for New Physics and tests of Lepton Flavour Universality

$$\mathcal{B}(B^+ o \ell^+
u_\ell) = rac{G_F^2 m_B m_\ell^2}{8\pi} (1 - rac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 au_B$$

Prediction: $\mathcal{B}(B
ightarrow \mu
u_{\mu})_{SM} = (3.46 \pm 0.28) imes 10^{-7}$

Evidence:

Belle (2.4σ): PRL **121**, 031801 (2018) Belle (2.8σ): <u>arXiv:1911.03186</u> [hep-ex]

Semileptonic Example

Abundant: 5% branching fraction (the above decay) 10% branching fraction $(B^0 \rightarrow X \ell v)$

The Belle II Physics Book, arXiv:1808.10567 Prog. Theor. Exp. Phys. **2019**, 123C01 (2019)

Belle II

Semileptonic Example

Same decay via a BSM charged Higgs

NP Examples:

Two-Higgs doublet models: H^+

Leptoquarks:

LQ

Lepton-Flavour Universality $R(\ell\ell') = \Gamma(\ell) / \Gamma(\ell')$ Violations (LFUV):

Modification of cross section due to NP process:

 $\mathcal{B}(B
ightarrow \mu
u_{\mu})_{NP} = \mathcal{B}(B
ightarrow \mu
u_{\mu})_{SM} imes \left|1 + r_{NP}^{\mu}\right|^{2}$

<u>McGill</u>

New Physics (NP) Possibilities

LLWI 2020

McGill Lepton Identification

• e ID: electromagnetic calorimeter (ECL) & inner tracking detectors $\rightarrow E/p$ + other PID criteria

Andreas Warburton

• µ ID: K_L and muon detector (KLM) & inner tracking detectors

McGill B-Meson Selection

Feb 11, 2020

Belle II

Belle

McGill Full Event Interpretation (FEI)

Belle II

 $\log(\mathcal{P}_{tag})$

classifier

McGill FEI 2019 Performance

$$m_{bc}=\sqrt{s/4-|ec{p}_{B_{ ext{tag}}}^*|^2}$$

Feb 11, 2020

Belle II

LLWI 2020

W McGill $B \rightarrow Xev$ with hadronic FEI

Feb 11, 2020

Belle II

McGill Mixing, Partial Reconstruction

Semileptonic Tagging (non-FEI)

$Intagged B^0 \to D^* \ell v$

Belle II LLW

Feb 11, 2020

McGill Physics Outlook 2020*

Current World Constraints on CKM Unitarity Triangle

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in2p3.fr

Physics with $O(10 \text{ fb}^{-1})$:

 $B \rightarrow X \ell v, B \rightarrow D^* \ell v$, using semileptonic FEI

Demonstration of nonzero V_{ub} in inclusive B \rightarrow X ℓ v decays

Physics with O(100 fb⁻¹):

Exclusive V_{ub} via $B \rightarrow \pi \ell v$; V_{cb} via $B \rightarrow D^* \ell v$

 $(\ell=e,\mu)$

Belle II

LLWI 2020

McGill Semitauonic Decays

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(ar{B} o D^{(*)} au^- ar{
u}_ au)}{\mathcal{B}(ar{B} o D^{(*)} \ell^- ar{
u}_\ell)} \ \ (\ell = e, \mu)$$

• $|V_{cb}|^2$ cancels and form-factor uncertainties are less impactful \rightarrow well predicted theoretically

McGill R(D), R(D*) Projections

R(D*)

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(ar{B}
ightarrow D^{(*)} au^- ar{
u}_ au)}{\mathcal{B}(ar{B}
ightarrow D^{(*)} \ell^- ar{
u}_\ell)} \hspace{0.2cm} (\ell = e, \mu)$$

Belle II will initially require ~1.5 ab⁻¹

Projected Belle II stat. \oplus syst. precision:

	$5 { m ~ab^{-1}}$	$50 { m ~ab^{-1}}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

The Belle II Physics Book, arXiv:1808.10567 Prog. Theor. Exp. Phys. **2019**, 123C01 (2019)

Polarisation measurements can also reveal or rule out New Physics

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$$
$$P_{D^{*}} = \frac{\Gamma_{L}}{\Gamma_{L} + \Gamma_{T}}$$

R(D*)

McGill Concluding Remarks

- The Belle II detector and the SuperKEKB collider provide a unique environment to search for physics Beyond the Standard Model via rare B, τ, and charm decay processes
- Leptonic and Semileptonic decays are promising sensitive probes into
 potential New Physics phenomena, manifested as modified decay rates
- Semileptonic decays are proving to be excellent systems for the commissioning of the Belle II detector and its reconstruction performance
- Full Event Interpretation, a powerful new tool for B-meson tagging in the uniquely coherent initial state of an e⁺e⁻ machine, is undergoing calibration
- Stay tuned for physics results to come!

Three other **Belle II** talks later this week!

- DM Searches (M. De Nuccio, Thursday)
- Status & Prospects (T. Bilka, Friday)
- Rare *B* Decays (M.-C. Chang, Friday)

Backup Slides

Projections

			Observables		Belle			Bel	lle II					
					(2017)			5 ab^{-1}	50 ab^-	1				
			$ V_{cb} $ incl.		$42.2 \cdot 10^{-3} \cdot ($	$1\pm1.8\%)$		1.2%	_					
			$ V_{cb} $ excl.		$39.0 \cdot 10^{-3} \cdot ($	$1 \pm 3.0\%_{\mathrm{ex.}} \exists$	$= 1.4\%_{ m th.})$	1.8%	1.4%					
		_	$ V_{ub} $ incl.		$4.47 \cdot 10^{-3} \cdot ($	$1 \pm 6.0\%_{\rm ex.}$ \exists	$=2.5\%_{ m th.})$	3.4%	3.0%					
Observa	aples	5	$ V_{ub} $ excl. (W.	A)	$3.65 \cdot 10^{-3} \cdot ($	$1 \pm 2.5\%_{\text{ex.}} \exists$	$= 3.0\%_{ m th.})$	2.4%	1.2%					
			$\mathcal{B}(B \to \tau \nu) \ [1]$	0^{-6}]	$91 \cdot (1 \pm 24\%$)		9%	4%					
			$\mathcal{B}(B \to \mu \nu) \ [1]$	0^{-6}]	< 1.7			20%	7%					
			$R(B \to D\tau\nu)$	(Had. tag)	$0.374 \cdot (1 \pm 10)$	6.5%)		6%	3%					
			$R(B \to D^* \tau \nu)$) (Had. tag)	$0.296 \cdot (1 \pm 7)$.4%)		3%	2%					
								11						
								[ab]						
							110	27) r						
							niscov							
			3	Tabl	e A	1010	· (* 10)	o ve		al				
		or	OCEPT	Observ	Theory	GVS. 00	15 LHC	15 Beu	Anor	Dan	R			
	_	y			\$				ţ,)				
		B	$ ightarrow \pi \ell u_\ell$	$ V_{ub} $	***	10-20	***	***	**		*			
		B	$\to X_u \ell \nu_\ell$	$ V_{ub} $	**	2 - 10	***	**	***		*			
		B	ightarrow au u	Br.	***	>50(2)	***	***	*	7	***			
Golden		B	$\rightarrow \mu \nu$	Br.	***	>50(5)	***	***	*	7	***			
&		B	$\rightarrow D^{(*)}\ell\nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**		*			
Silver		B	$\rightarrow X_c \ell \nu_\ell$	$ V_{cb} $	***	1-5	***	**	**		**			
Madaa		B	$\rightarrow D^{(*)}\tau\nu_{-}$	$R(D^{(*)})$	***	5-10	**	***	***		***			
modes		D	$D^{(*)}$	D D		15 20								
		D ·	$\rightarrow D^{(\gamma)} \nu_{\tau}$	Γ_{τ}	***	10-20	***	***	**	7	* * *			
		B	$\rightarrow D^{**}\ell\nu_{\ell}$	Br.	*	-	**	***	**		-			
									F	The Bel	le II Physic	s Book, arX	(iv:1808.1	0567
									1	Prog. Tl	neor. Exp. F	Phys. 2019,	123C01	(2019)

McGill Ir(reducible) Systematics

Examples of Reducible (Irreducible) Systematics from Belle

$B^0 o \pi^- \ell^+ u_\ell$	$711~{\rm fb}^{-1}$	$605~{\rm fb}^{-1}$			
Source	Error (Limit) [%]				
	Tagged $[\%]$	Untagged			
Tracking efficiency	0.4	2.0			
Pion identification	_	1.3			
Lepton identification	1.0	2.4			
Kaon veto	0.9	_			
Continuum description	1.0	1.8			
Tag calibration and $N_{B\overline{B}}$	4.5(2.0)	2.0(1.0)			
$X_u \ell \nu$ cross-feed	0.9	0.5 (0.5)			
$X_c \ell \nu$ background	_	0.2(0.2)			
Form factor shapes	1.1	1.0(1.0)			
Form factor background	_	0.4(0.4)			
Total	5.0	4.5			
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)			

 $B \to X_u \ell \nu$

 $605 {
m ~fb^{-1}}$

Source	Error on \mathcal{B} (irre-				
	ducible limit)				
$\mathcal{B}(D^{(*)}\ell u)$	1.2 (0.6)				
Form factors $(D^{(*)}\ell\nu)$	1.2 (0.6)				
Form factors & $\mathcal{B}(D^{(**)}\ell\nu)$	0.2				
$B \to X_u \ell \nu(\mathrm{SF})$	3.6 (1.8)				
$B \to X_u \ell \nu (g \to s \bar{s})$	1.5				
${\cal B}(B o \pi / ho / \omega \ell u)$	2.3				
${\cal B}(B o \eta^{(\prime)}\ell u)$	3.2				
$\mathcal{B}(B \to X_u \ell \nu)$ unmeasured/fragmentation	2.9(1.5)				
Continuum & Combinatorial	1.8				
Secondaries, Fakes & Fit	1.0				
PID& Reconstruction	3.1				
BDT/Normalisation	3.1 (2.0)				
Total	8.1				
(Total reducible)	7.4				
(Total irreducible)	3.2				

The Belle II Physics Book, arXiv:1808.10567 Prog. Theor. Exp. Phys. **2019**, 123C01 (2019)

Feb 11, 2020

Belle II

LLWI 2020