The Belle II/SuperKEKB project

Peter M. Lewis

University of Hawai'i at Mānoa on behalf of the Belle II Collaboration

29 August 2017 18th Lomonosov Conference, Moscow

Belle/KEKB

The *B*-factory at KEK (Tsukuba, Ibaraki, Japan)

- Targeted *CP*-violation using 771 million *B* meson pairs
- Operated from **1999 to 2010**
- The KEKB accelerator delivered **over 1ab**⁻¹ to the Belle detector, a huge success (mostly at Y(4S) resonance)
- Along with BaBar, **confirmed Kobayashi and Maskawa model** of *CP* violation, leading to 2008 Nobel Prize
- Additional unique datasets at Y(1S), Y(2S), Y(5S) resonances, leading to **unexpectedly rich additional results**

Belle/KEKB

How it worked

- Electrons accelerated to **8 GeV** in linac
- Positrons generated and accelerated to **3.5 GeV**
- The two beams are **injected** in opposite directions into the 3km circumference storage ring in **bunches**
- **Quadrupole** magnets **contain** beams
- **Dipole** magnets **steer** beams
- Final focusing **quadrupole** magnets **focus** and cross the beams at the "interaction point" (**IP**)
- Belle detectors at IP detect products of the (asymmetric) collisions

Belle II/SuperKEKB

The super *B*-factory at KEK (2019 start)

- A **40-fold** increase in luminosity over KEKB (target: 8x10³⁵ cm⁻²s⁻¹ instantaneous, **50 ab⁻¹** integrated), due to major upgrades:
 - "Nano-beam" scheme (below)
 - Doubled beam currents
 - Both projects require **major upgrades** to achieve this
- First turns Feb. 10, 2016! Exciting times!

Factor of 2

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{\pm}\varsigma_{\pm y}}{\beta_y^*} \right) \left(\frac{R_L}{R_y} \right) = 8 \times 10^{35} cm^2 s^{-1}$$

SuperKEKB is the next luminosity frontier

SuperKEKB upgrades

SuperKEKB upgrades

Overview

- Accelerate and store **high-current**, **low-emittance** beams
 - New 135m diameter **positron damping ring**
 - Upgraded **RF** system
 - New beam pipe in low energy (positron) ring with TiN coating to suppress electron-cloud
 - Longer quadrupole focusing magnets in low energy ring to squeeze emittance during transport
- Focus to **nanobeams** at interaction point
 - New superconducting final focusing magnets

SuperKEKB upgrades

New final focusing magnets

- "The world's most complicated superconducting magnet system" (QCS):
 - 55 superconducting coils in two cryostats (dipoles, quads, sextupoles, compensating solenoids, ...)
 - A large crossing angle (4.8 degrees) keeps beams separated in quads while having focusing elements very near interaction point
- Key to **nanobeam** magic!

Belle II upgrades

For **physics** prospects, see **K. Suzuki**, *Belle II Physics Prospects*, tomorrow

Belle II upgrades

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

Vertexing: new 2 layers of pixels, upgraded 4 double-sided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

 K_L and μ : scintillators replace RPCs (endcap and inner two layers of barrel)

Belle II upgrade details

New vertexing system

- **Critical** component of *CP*-violation studies (for tagging of *B* mesons with displaced decay vertices)
- Two subdetector systems:
 - All-new: two layers of DEPFET pixels at extreme low-r (PXD)
 - Upgrade: four layers of double-sided silicon strip sensors (SVD)
- Major challenges: limit material budget, increased radiation environment
- Vertexing resolution improved by factor of ~2 compared to Belle

Belle II upgrade details

Barrel PID detector

- All-new Cherenkov time-of-propagation (TOP) detector
 - Compact DIRC variant
 - For K/π discrimination in the barrel
 - Cherenkov **angle** depends on **velocity**
 - **Time of propagation** of light to photodetectors identifies **mass**
- Design
 - Interleaved quartz bars between drift chamber and calorimeter
 - Linear array of microchannel plate PMTs at end of bar
 - Requires picosecond timing (bottom)

12

Belle II

SuperKEKB/Belle II commissioning

Phase I (complete)

- Circulate both beams; **no collisions, no Belle**
- Tune accelerator optics, etc.
- Vacuum scrub
- Beam studies with "BEAST II"

Install final focusing magnet systems (**complete**)

Belle subdetector installation

• Barrel Cherenkov PID detector (TOP) installed May 2016

Belle subdetector installation

- Barrel Cherenkov PID detector (TOP) installed May 2016
- Drift chamber (CDC) installed **October 2016**

Belle subdetector installation

- Barrel Cherenkov PID detector (TOP) installed May 2016
- Drift chamber (CDC) installed **October 2016**
- Endcap Cherenkov PID detector (ARICH) integration completed **last week** (left)
- Central vertexing detectors (SVD+PXD) assembling; will be integrated after Phase 2
- Other installation and upgrade work ongoing

22

BEAST II

Beam background monitoring in **Phase 1**

- 7 detector systems providing:
 - Thermal neutron rate
 - Fast neutron tracking
 - Neutral and charged dose rates
 - EM spectrum and dose
 - Bunch-by-bunch injection backgrounds
 - More...
- Provided **real-time feedback** to SuperKEKB controllers
- Analysis ongoing to inform Phase 2 + 3 run conditions, masking, collimation, etc.

BEAST II: some results from phase 1

Touschhek scattering

- Intra-beam scattering increases as beam is squeezed
- Key background in Belle II
- Phase 1 result: **parameterization** of Touschek as function of beam size and position
 - \circ ~ Can be extrapolated to Phase II
 - Informs masking/collimation choices

BEAST II: some results from phase 1

Beam scrubbing

- Cleaning beam pipes with beams
- Clear progress over time
- Findings: HER scrubbing adequate, LER **not yet**

BEAST II: some results from phase 1

Injection

- Principle
 - Newly topped-off bunches are "**hot**" for ~ms
 - Bunches circulate with 10us period
 - Fast detectors (~ns) measure **bunch-by-bunch** background time structure at IP
- **Critical** to pixel vertexer performance
 - Electronic gating may be necessary for short window after injection
- **Results**: real-time feedback to SuperKEKB *artists* and detailed characterization of injection backgrounds

BEAST II

Beam background monitoring in Phase 2

• Detectors:

- Some BEAST II detectors from Phase 1
- New BEAST II detectors (right) in Belle
 II's vertex detector volume
- Some Belle II detectors
- Goal: study beam backgrounds with **luminosity** and **nanobeams**
 - Ensure that vertex detectors are safe to install
 - Measure synchrotron radiation at IP
- Installation already underway

Overall project status

SuperKEKB and Belle II

- On-target for Feb. 2018 first collisions (Phase 2)
 - SuperKEKB upgrades are on-target (currently commissioning new positron damping ring)
 - Phase 2 BEAST II is starting installation work **~now**
 - Belle II outer subdetectors are in-place and currently participating in a **global cosmic run**
- First physics runs with vertex detector (full Belle II)
 ~January 2019
- It is a very busy and exciting time!

Спасибо!