

^{1 ab⁻¹} Belle II Physics Prospects & Complementarity

Youngjoon Kwon Yonsei Univ.

BEAUTY 2014, Edinburgh, July 14-18, 2014

Outline

- Introduction -- the Intensity Frontier
- Strengths (unique features) of Belle II
- The driving questions for Belle II
- Conclusion

2

SuperKEKB & Belle II

Prospect at Belle II 7GeV e⁻ ×4GeV e^{+,} $\mathcal{L}_{\text{peak}} = 8 \rightarrow \qquad \begin{array}{l} \text{L}_{\text{peak}} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}, \\ \int_{\mathcal{L}}^{\text{goal}} dt = 50 \text{ ab}^{-1} \end{array}$

• $B \rightarrow \tau \nu$

Expected data sample

Channel	Belle	BaBar	Belle II (per year)
$Bar{B}$	7.7×10^{8}	4.8×10^8	1.1×10^{10}
$B_s^{(*)}\bar{B}_s^{(*)}$	$7.0 imes 10^6$	—	$6.0 imes 10^8$
$\Upsilon(1S)$	1.0×10^{8}		$1.8 imes 10^{11}$
$\Upsilon(2S)$	1.7×10^{8}	$0.9 imes 10^7$	$7.0 imes 10^{10}$
$\Upsilon(3S)$	1.0×10^7	$1.0 imes 10^8$	$3.7 imes10^{10}$
$\Upsilon(5S)$	$3.6 imes10^7$	—	$3.0 imes 10^9$
au au	1.0×10^{9}	0.6×10^9	1.0×10^{10}

Note: $\sigma_{b\bar{b}} \simeq \sigma_{c\bar{c}} \simeq \sigma_{\tau^+\tau^-}$

4

The three frontiers

Origin of Mass

The Energy Frontie

Matter/Antimatter Asymmetry

Dark Matter

Origin of Universe

Unification of Forces

New Physics Beyond the Standard Model

Flave Internsitiv Frontier

erticles The Cosmic

Past highlights from Intensity Frontier

a flavor physics hat trick!

"A special search at Dubna was carried o group. They did not find a single $K_L \rightarrow \pi^+$ 600 decays into charged particles [12] (A At that stage the search was terminated the Lab. The group was unlucky." -Lev Okun, "The Vacuum

- suppression of $K_L^0 \to \mu^+ \mu^-$ decays \Rightarrow existence of charm quark by GIM mechanism
- $K^0 \overline{K}^0$ oscillations, $B^0 \overline{B}^0$ oscillations \Rightarrow charm and top quark masses
- CPV in K^0 systems

 \Rightarrow 3rd generation of quarks & KM mechanism

At that stage the search was terminated by the family the Lab. The group was unlucky."

he

10(

Ε ei

E

-Lev Okun, "The Vacuum as Seen fro a lesson from history...

$(1964) \mathcal{B} = 2 \times 10^{-3}$ 1964 BF= 2 x 10^{-3}

Energy vs. Intensity Frontier

- Intensity Frontier is **complementary** to the Energy Frontier
- If LHC finds NP ۲
 - * precision flavor input is essential to further clarify those discoveries
- Even if no new NP is found
 - high-statistics flavor sector * measurements (on *b*, *c*, and τ) can provide beyond-TeV-scale probe for NP

The Intensity Frontier

- Explorers of the Intensity Frontier
 - 1) hadron machines, e.g. LHCb
 - 2) next generation flavor factories, e.g. Belle II @ SuperKEKB, or BESIII @ BEPC

* ultra-high-statistics sample of B and B_s in all-charged modes

Belle II

- * unique for final states with neutrinos or multiple photons (i.e. π^{0})
- * also a good place to study charm, $\tau^+\tau^-, \Upsilon(nS)$
- * *hermeticity* is a great plus, too!

Observable	SM prediction	
$ V_{us} = [K \rightarrow \pi \ell \nu]$	input	
$ V_{cb} [B o X_c \ell u]$	input	Belle II
$ V_{ub} $ $[B ightarrow \pi \ell \nu]$	input	Belle II
$\gamma \qquad [B o DK]$	input	LHCb/Belle II
$S_{B_d \to \psi K}$	$\sin(2\beta)$	Belle II/LHCb
$S_{B_s o \psi \phi}$	0.036	LHCb
$S_{B_d o \phi K}$	$\sin(2\beta)$	Belle II/LHCb
$S_{B_s \to \phi \phi}$	0.036	LHCb
$S_{B_d \to K^* \gamma}$	${\rm few} \times 0.01$	Belle II
$S_{B_s o \phi \gamma}$	few \times 0.01	LHCb
$A^d_{ m SL}$	$-5 imes 10^{-4}$	Belle II/LHCb
$A^s_{ m SL}$	$2 imes 10^{-5}$	LHCb
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	Belle II
$\mathcal{B}(B \to \tau \nu)$	$1 imes 10^{-4}$	Belle II
$\mathcal{B}(B \to \mu \nu)$	4×10^{-7}	Belle II
${\cal B}(B_s o \mu^+ \mu^-)$	$3 imes 10^{-9}$	LHCb
${\cal B}(B_d o \mu^+ \mu^-)$	1×10^{-10}	LHCb
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	LHCb
$B \to K \nu \bar{\nu}$	4×10^{-6}	Belle II
$ q/p _{D- ext{mixing}}$	1	Belle II
ϕ_D	0	Belle II
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	
${\cal B}(K_L o \pi^0 u ar u)$	2.6×10^{-11}	
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	adapted 1. Flavor Phy
$\mathcal{B}(t\to cZ,\gamma)$	$\mathcal{O}\left(10^{-13} ight)$	Gino Isidori (F

Belle II vs. LHCb

complementarity (or competition!) at a glance

pted from

or Physics Constraints for Physics Beyond the Standard Model Isidori (Frascati & TUM-IAS, Munich), Yosef Nir, Gilad Perez (Weizmann Inst.). Feb 2010. 33 pp. Published in Ann.Rev.Nucl.Part.Sci. 60 (2010) 355

Strengths of Belle II

Full reconstruction of B

- modes w/ multiple v's *
- inclusive measurements *

Hermeticity

- minimal trigger for, e.g. Dalitz analysis *
- precision τ measurements *
- Neutral particles π^0, K_S^0, K_L^0
 - and for η, η', ρ^+ , etc. *
- other notable features
 - good PID for both μ^{\pm} and e^{\pm} *
 - high flavor-tagging efficiency *
 - (×15 better than LHC)

Belle II covering \geq 90% of 4 π , and (N(track)) ~ 10 per event

Production of B in Belle(II)

- making B's at hadron colliders (e.g. LHCb)
 - huge number of *B* mesons are produced, but
 - no info. on p_B^{μ} , unless you actually reconstruct the B meson \Rightarrow will be of little use for modes with invisible particle(s)
- making B's at e^+e^- colliders with $\sqrt{s} = m(\Upsilon(4S))$
 - a moderate number of *B* mesons are produced
 - $E_B = \sqrt{s/2} \sim 5.29 \text{ GeV}$; $|\vec{p}_B| \sim 0.35 \text{ GeV}/c$
 - but.. direction of \vec{p}_B ?
- $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) > 96\%$ \Rightarrow nothing but $B\overline{B}$ in the final state \therefore if we know (E, \vec{p}) of one B, the other B is also constrained

Strengths of Belle II Full reconstruction of B

- Exploit the reaction process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{\text{tag}}\bar{B}_{\text{sig}}$
 - * full reconstruction of *B*_{tag} decay chain, and
 - * constrain the (E, \vec{p}) , charge, flavor, etc. of B_{sig}

Full recon. of B, ever improved!

• "NeuroBayes" M. Feindt et al., NIM A 654, 432 (2011)

- a novel method of B full recon. with neural network *
- the NN output is interpreted as Bayesian probability of truth *
- of great use for $B \to \tau^+ \nu$, $\ell^+ \nu$, $\nu \bar{\nu}$, $X \ell^+ \nu$, $X_{s,d} \gamma$, etc.

Strengths of Belle Full-recon. for charm

- Recoil method in $c\bar{c}$ events: $e^+e^- \rightarrow c\bar{c} \rightarrow \overline{D}_{tag} K X_{frag} D_s^{*+}$
- Inlusive D_s for normalization \Rightarrow use missing mass: $M_{\text{miss}}(\overline{D}_{\text{tag}} K X_{\text{frag}} \gamma)$

	Statistical	Systematic	
		reducible	irreducit
$\mathcal{B}(D_s \to \mu \nu)$			
$913~{ m fb}^{-1}$	5.3	0.0	3.8
5 ab^{-1}	2.3	1.6	0.0-0.9
$50 \mathrm{~ab^{-1}}$	0.7	0.5	0.0-0.9
$\mathcal{B}(D_s \to \tau \nu)$			
$913~{ m fb}^{-1}$	3.7%	4.4%	3.5%
5 ab^{-1}	1.6%	1.9%- $2.3%$	3.5%- 2.2
50 ab^{-1}	0.5%	0.6%-0.7%	3.5%- 2.2

more modes to explore with this method

* $D^0 \rightarrow \nu \bar{\nu}$: sensitive to new scalar particles (DM, etc.) * $D^0 \rightarrow \gamma \gamma$: expect to reach $\mathcal{O}(10^{-7})$ sensitivity \Rightarrow measure of the long distance contributions to the $\mu^+\mu^-$ mode

Neutral particles @ Belle II

- Much fewer background photons than in hadron collider
- Higher performance calorimeter
- Much less material in front (esp. good for electrons)

Strengths of Belle II

Neutral particles @ Belle II

 $B \rightarrow J/\psi K_L^0$ signal from full Belle sample

Even K_L is not a problem at all, for Belle II

 \rightarrow provide a test of consistency with K_S and K_L modes

impossible mission @ LHC

better S/B in Belle II is expected, due to (1) using scintillators in the end caps and inner barrel layers \rightarrow higher efficiency and reduced neutron background

(2) using a prompt timing cut in RPCs and scintillators \rightarrow reduced neutron background.

Strengths of Belle II

Driving questions for Belle II

- (1) Are there any new CPV phases?
- (2) Any right-handed currents from NP?
- (3) Quark FCNC beyond the SM? New operators with quarks enhanced by NP?
- (4) Sources of LFV from NP?
- (5) Any more higgs? (e.g. H⁺)
- (6) Understanding exotic QCD states?
- (7) Hidden dark sector?
 - ... just listing 007* such questions ...

Driving questions for Belle II (1)

Check $\Delta S \equiv \sin 2\phi_{1,\text{eff}}(b \to s\bar{s}s) - \sin 2\phi_1(b \to c\bar{c}s)$

Driving questions for Belle II (1')

B factories now (~1.4 ab⁻¹)

measured (world avg)

expected (sum rule)

$$\begin{array}{l}
A(K^{0}\pi^{0}) = \\
A(K^{0}\pi^{+}) = \\
A(K^{+}\pi^{0}) = \\
A(K^{+}\pi^{-}) = \\
\end{array}$$

± 1.3	± 1.3	± 1.3
± 1.1	± 0.8	± 0.8
$^{+11.0}_{-13.2}$	± 5.5	± 10.5

Driving questions for Belle II (1') Total ± 6.7 ± 4.0 ± 4.9 ± 5.4 ± 4.4 $\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+}) \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0}) \frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0}\pi^{0}) \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0}\pi^{0}) \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0}\pi^{0}) \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\tau_{+}} \frac{\mathcal{B}(K^{0}\pi^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}($ Belle the * neı $\mathcal{A}_{CP}(I)$

B factory at 50 ab⁻¹, with today's central values:

y Sheldon Adventure of

Driving questions for Belle II (2)

Any right-handed currents from NP?

probed by an epipe problem by the try with $B^0 \to K^0_S \pi^0 \gamma$

In SM, one naively expects:

$$S_{K_S^0 \pi^0 \gamma} = -2 \frac{m_s}{m_b} \sin 2\phi_1 \sim -0.03$$

In a L-R symmetric $S_{K_S^0 \pi^0 \gamma} \sim 0.5$

c model,

Driving questions for Belle II (2)

Any right-handed currents from NP?

 $S = -0.16 \pm 0.22, \quad C = -0.04 \pm 0.14$

mostly statistics limited

$$\sigma(S_{K^*\gamma}) \sim 0.09 @ 5 ab^{-1}$$

~ 0.03 @ 50 ab^{-1}

value of S can discriminate among SUSYbreaking mechanisms

G. Buchalla et al., EPJC 57, 309 (2008)

hat Belle II does to improve $S_{K_S\pi^0\gamma}$

Will improve analyses such as $B \rightarrow K_S \pi^0 \gamma$ (decay vertex determined by K_{S} and IP)

 $C_{CP}(Ks \pi^0 \gamma) = -0.07 \pm 0.12$ $S_{CP}(Ks \pi^0 \gamma) = -0.15 \pm 0.20 \rightarrow 0.10 \ (5 \ fb^{-1})$

A. J. Schwartz

FPCP 2014, Marseilles, France Belle II Physics Prospects

\rightarrow 0.04 (50 fb⁻¹)

42

Driving questions for Belle II (3)

Quark FCNC beyond the SM? New operators with quarks enhanced by NP?

$$R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\Gamma(B \to K^{(*)} e^+ e^-)}$$

"×5 less signal (for e+e- mode) mainly due to low trigger and recon eff" from M. D. Cian @ LHCP 2014

- \rightarrow unique for Belle II
- * Belle II can be competitive for R_K , R_{K^*} with excellent electron ID

10 ty (ab	1) y		AF (GeV)
	τ→μγ	τ→μμμ	
	10 ⁻⁹	10 ⁻¹⁰	
	10 ⁻⁹	10 ⁻⁸	
	10 ⁻⁸	10 ⁻¹⁰	
	10 ⁻⁷	10 ⁻⁹	
	10 ⁻¹⁰	10 ⁻⁷	
			P. (GeV

d-fr.86687

Driving questions for Belle II (5)

- Any more higgs? (e.g. H^+)
- $\mathcal{L}_{\text{peak}} = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$, $\mathcal{L}_{\text{int}} = 50 \text{ab}^{-1}$

• $B^+ \rightarrow \tau^+ \nu_{\tau}$

- * $\Delta \mathcal{B} \sim a$ few %
- * need better precision for $f_B |V_{ub}|$

•
$$B^+
ightarrow \mu^+
u_\mu$$
 , $B^+
ightarrow e^+
u_e$

- * 5 σ observation expected for $B^+
 ightarrow \mu^+
 u_\mu$ (SM) at $\sim 10~{
 m ab}^{-1}$
- * $\mathcal{O}(10^{-8})$ sensitivity at 50 ab⁻¹
- interesting to compare with $B^+ \rightarrow \tau^+ \nu_{\tau}$

• and don't forget we also have $B \rightarrow D^{(*)} \tau^+ \nu_{\tau}$

75 ab⁻¹ The current combined limit places a stronger constraint than direct searches from LHC exps. for the next few years.

Driving questions for Belle II (6)

Understanding exotic QCD states?

- great potential to discover states
- look for signals in the missing (recoil) mass against $\pi^+\pi^ \Upsilon(5S) \rightarrow (\cdots) \pi^+ \pi^-$
- lead to discoveries of $h_b(1P)$ and $h_b(2P)$

hermeticity of Belle II gives a and understand exotic QCD

• and, consequent discoveries of exotic Z_b^+ states in $h_b(1, 2P)\pi^+$

ntinu

Key Observables (Belle II)

Obcorreblo	SM theory	Current measurement
Observable	Sivi theory	(early 2013)
$S(B \to \phi K^0)$	0.68	0.56 ± 0.17
$S(B \to \eta' K^0)$	0.68	0.59 ± 0.07
$\alpha \text{ from } B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$
$\gamma \text{ from } B \to DK$		$\pm 11^{\circ}$
$S(B \to K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20
$S(B o ho \gamma)$	< 0.05	-0.83 ± 0.65
$A_{\rm CP}(B \to X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06
$A^d_{ m SL}$	-5×10^{-4}	-0.0049 ± 0.0038
$\mathcal{B}(B \to \tau \nu)$	1.1×10^{-4}	$(1.64 \pm 0.34) \times 10^{-4}$
$\mathcal{B}(B o \mu u)$	4.7×10^{-7}	$< 1.0 \times 10^{-6}$
$\mathcal{B}(B \to X_s \gamma)$	3.15×10^{-4}	$(3.55 \pm 0.26) \times 10^{-4}$
$\mathcal{B}(B \to K^{(*)} \nu \overline{\nu})$	$3.6 imes 10^{-6}$	$< 1.3 \times 10^{-5}$
$\mathcal{B}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \mathrm{GeV^2})$	1.6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$
$A_{\rm FB}(B^0 \to K^{*0}\ell^+\ell^-)$ zero crossing	7%	18%
$ V_{ub} $ from $B \to \pi \ell^+ \nu \ (q^2 > 16 \mathrm{GeV^2})$	$9\% \rightarrow 2\%$	11%

adapted from arXiv:1311.1076 COMMUNITY PLANNING STUDY: SNOWMASS 2013 with modifications(*) for Belle II projections, reported at BPAC 2014

Key Observables (LHCb)

Obsorvabla	Current SM	Precision	LHCb	LHCb Upgrade
Observable	theory uncertainty	as of 2013	(6.5 fb^{-1})	(50 fb^{-1})
$2\beta_s(B_s \to J/\psi\phi)$	~ 0.003	0.09	0.025	0.008
$\gamma(B \to D^{(*)}K^{(*)})$	< 1°	8°	4°	0.9°
$\gamma(B_s \to D_s K)$	< 1°		$\sim 11^{\circ}$	2°
$\beta(B^0 \to J/\psi K_S^0)$	small	0.8°	0.6°	0.2°
$2\beta_s^{\text{eff}}(B_s \to \phi\phi)$	0.02	1.6	0.17	0.03
$2\beta_s^{\text{eff}}(B_s \to K^{*0}\bar{K}^{*0})$	< 0.02		0.13	0.02
$2\beta_s^{\text{eff}}(B_s \to \phi\gamma)$	0.2%		0.09	0.02
$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.02	0.17	0.30	0.05
$A^s_{ m SL}$	0.03×10^{-3}	6×10^{-3}	1×10^{-3}	0.25×10^{-3}
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	8%	36%	15%	5%
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B_s \to \mu^+ \mu^-)$	5%		$\sim 100\%$	${\sim}35\%$
$A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$ zero crossing	7%	18%	6%	2%

from arXiv:1311.1076 COMMUNITY PLANNING STUDY: SNOWMASS 2013

Comparing the two tables, it is clear that Belle II can cover most "driving" questions" with the unique key observables which are complementary with others.

t discussed, but no less important Belle II Semileptonic B decays (inclusive & exclusive) for $|V_{ub}|$, $|V_{cb}|$

- Ingering concerns on "exclusive vs. inclusive" puzzle *
- CPV and mixing for charm

Alexander Ermakov (FPCP14):

Integrated Luminosity [ab⁻¹]

not discussed, but no less important

- \sim ptonic B decays (inclusive & exclusive) for $|V_{ub}|$, $|V_{cb}|$ Belle I gering concerns on "exclusive vs. inclusive" puzzle
- CPV and mixing for charm

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}	-
$D^0 o K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03	-
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05	
$D^0 ightarrow \pi^0 \pi^0$	976	$\sim\pm0.60$	± 0.08	
$D^0 o K^0_s \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	±0.03	
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	m
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09	π^{0}
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13	@
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	±0.40	
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	±0.33	
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04	-
$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	
$D^+ o K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	±0.03	
$D^+ o K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05	
$D^+_s o K^0_s \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29	-
$D^+_s ightarrow K^0_s K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05	_

table by M. Staric @ KEK FFW 2014

Epilogue

spectrum had been measured, have come much later.