Future Prospects for Heavy Flavor Measurements

Sergey Yashchenko, DESY (Belle2 Collaboration) Madrid, Spain, 8.04.2014

>Introduction

> Physics Highlights from LHCb and Belle

>Experimental Status and Plans

- LHCb Upgrade
- Belle2

Introduction

>LHC discovered a Higgs

>No New Physics observed

- Direct: no BSM particles or decays
- Indirect: measured deviations from the SM are small

Important

- Joint efforts in energy and intensity frontier
- High experimental precision
- Theoretical cleanliness

Heavy Flavor Physics at LHCb and Belle II

>LHCb

- Great B and charm statistics
- Very good charged particle reconstruction

- Complimentary to direct searches for New Physics at LHC
- > Need precise theoretical predictions

			TITCI	T T 1	701
Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	—	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	-	5 %	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(\bar{K}\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
1960) 	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8 %	2.5~%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-	$\sim 100\%$	$\sim 35\%$	$\sim 5~\%$
Unitarity	$\gamma \ (B \rightarrow D^{(*)}K^{(*)})$	$\sim 10 12^{\circ} \ [19, \ 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	-	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	-
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_

Key observables (arXiv:1311.1076)

Heavy Flavor Physics at LHCb and Belle II

> Belle II

- Well-defined initial state
- Ability to reconstruct final states with photons, π^{0} s and neutrinos
- Complimentary to direct searches for New Physics at LHC
- > Need precise theoretical predictions

Obgowyshla	SM theory	Current measurement	Belle II
Observable	SWI theory	(early 2013)	$(50 \mathrm{ab^{-1}})$
$S(B o \phi K^0)$	0.68	0.56 ± 0.17	± 0.03
$S(B\to\eta' K^0)$	0.68	0.59 ± 0.07	± 0.02
α from $B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$	$\pm 1.5^{\circ}$
γ from $B \to DK$		$\pm 11^{\circ}$	$\pm 1.5^{\circ}$
$S(B \to K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.03
$S(B\to\rho\gamma)$	< 0.05	-0.83 ± 0.65	± 0.15
$A_{\rm CP}(B \to X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.02
$A^d_{ m SL}$	-5×10^{-4}	-0.0049 ± 0.0038	± 0.001
$\mathcal{B}(B \to \tau \nu)$	1.1×10^{-4}	$(1.64 \pm 0.34) \times 10^{-4}$	$\pm 0.05 \times 10^{-4}$
$\mathcal{B}(B \to \mu \nu)$	4.7×10^{-7}	$< 1.0 \times 10^{-6}$	$\pm 0.2 \times 10^{-7}$
$\mathcal{B}(B \to X_s \gamma)$	3.15×10^{-4}	$(3.55 \pm 0.26) \times 10^{-4}$	$\pm 0.13 \times 10^{-4}$
$\mathcal{B}(B \to K \nu \overline{\nu})$	3.6×10^{-6}	$<1.3\times10^{-5}$	$\pm 1.0 \times 10^{-6}$
$\mathcal{B}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \mathrm{GeV}^2)$	1.6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$
$A_{\rm FB}(B^0 \to K^{*0}\ell^+\ell^-)$ zero crossing	7%	18%	5%
$ V_{ub} $ from $B\to \pi\ell^+\nu~(q^2>16{\rm GeV^2})$	$9\% \rightarrow 2\%$	11%	2.1%

Key observables (arXiv:1311.1076)

Search for Rare $B^0_{(s)} \rightarrow \mu^+ \mu^-$ Decays

- > Flavor Changing Neutral Current (FCNC), suppressed in the SM
- > Sensitive to NP contributions
- > LHCb found first evidence for rare decay $B^0_{\ s} \rightarrow \mu^+ \mu^-$ Phys. Rev. Lett. **110**, 021801 (2013)
- > Combining CMS (25 fb⁻¹) and updated LHCb (3 fb⁻¹) results *Phys. Rev. Lett.* **111**, 101804, 101805 (2013) \rightarrow first observation of $B^0_{\ s} \rightarrow \mu^+\mu^-$

CMS-PAS-BPH-13-007; LHCb-CONF-2013-012

Comparison with the SM and Its Extensions

Constraints on New Physics models

> The current SM BR($B^0_{s} \rightarrow \mu^+ \mu^-$) has about 10% uncertainty, important to improve theoretical errors

Electroweak Penguin $b \rightarrow s l^+l^-$

- > Electroweak penguin (or box) diagram
- > Rich set of observables
 - Branching fraction, CP Asymmetry, isospin asymmetry, $q^2 = |M(l^+l^-)|^2$, FL, forward-backward asymmetry, ratio of μ mode and e mode

> Belle measurement of the forward-backward asymmetry in $B \rightarrow K^*l^+l^-$, indication of New Physics?

Electroweak Penguin $b \rightarrow s l^+l^-$

- > Electroweak penguin (or box) diagram
- > Rich set of observables
 - Branching fraction, CP Asymmetry, isospin asymmetry, $q^2 = |M(l^+l^-)|^2$, FL, forward-backward asymmetry, ratio of μ mode and e mode

> Other experiments including LHCb are consistent with the SM

Inclusive $B \rightarrow X_s l^+ l^-$

> LHCb will further improve the measurement on the exclusive μ mode

> B factory experiments advantages

- Ratio of muon mode and electron mode
- Inclusive (sum-of-exclusive) analysis

> Measurement of the forward-backward asymmetry in $B \rightarrow X_{g}^{I^{+}I^{-}}$ at Belle

Semi-inclusive reconstruction (sum-of-exclusive) method

• $X_s I^+ I^-$ is reconstructed from 36 (18x2) exclusive modes

Smaller uncertainties of theoretical calculations than in exclusive case

> One of the key measurements at Belle II

Inclusive $B \rightarrow X_s \gamma$

- > $b \rightarrow s \gamma$ transition: FCNC
- Forbidden at tree level in the SM, proceeds via loop diagrams
- Inclusive branching fraction sensitive to new particles in the loop
- Preliminary results from Belle T. Saito, Moriond EW, La Thuile, 17.03.2014 https://indico.in2p3.fr/conferenceDisplay.py?confld=9116
- > Semi-inclusive (sum-of-exclusive) approach
- Consistent with the SM
- Key measurement at Belle II
- Improvements in theoretical calculations important

SM prediction 3.15 ± 0.23

Unique Capabilities of e⁺e⁻ B Factories

- >Clean event environment
- >Detection of neutral particles
- >Example: full reconstruction method

Decays of interest $B \rightarrow \tau \nu, \ D \tau \nu$ $B \rightarrow X_u l \nu$ $B \rightarrow K \nu \nu$...

Full reconstruction $B \rightarrow D\pi \ etc$ (0.1–0.3%) Semileptonic tagging

Belle: B Decays with Tau Lepton

Belle: B Decays with Tau Lepton

LHCb and Belle II: Why Upgrade?

>LHC experiments and B factories collected a lot of data

- >Most of the results compatible with the Standard Model
- >Measured deviations from the Standard Model are small
- >Many measurements still limited in statistics
- >Systematic uncertainties can be reduced with more data
- Some parameters of theoretical calculations can be better constrained using high-statistics data

LHCb Current Limitations

> Hardware trigger and DAQ

> Rate limited by bandwidth to 1.1 MHz

> Yield saturation: factor ~2 between di-muon events and fully hadronic decays

- > At high luminosities
 - Harsher cuts on p_{T} and E_{T}
 - More pile-up: reconstruction more difficult
 - Detector aging and degradation for no real gain in statistics

40 MHz bunch crossing rate

LO Hardware Trigger : 1 MHZ

LHCb Upgrade Strategy

> Efficient selection requires IP and p_{τ} of tracks

> Readout every LHC bunch crossing: 40 MHz instead of 1.1 MHz

- Trigger-less Front-End electronics
- Multi-Tbit/s readout network
- > Fully software flexible trigger (HLT)
 - Output bandwidth ~20kHz
- > Readout conditions
 - Design upgraded sub-detectors to sustain instantaneous luminosity up to 20x10³² cm⁻²s⁻¹ (pile up=5.2, 2622 bunches, 25 ns, 14 TeV)
- > Goal: collect ≥ 50 fb⁻¹ over 10 years (increase of luminosity and trigger efficiency)

Remove L0

LHCb Detector Upgrade

LHC Schedule After the Long Shutdown 1

Run 2: LHCb should collect an additional 5-7 fb⁻¹ of data
 LS 2: upgrade of LHCb (18 months shutdown)
 Then take data: collect ≥ 50 fb⁻¹ within about 10 years

http://cds.cern.ch/record/1333091/files/LHCC-I-018.pdf http://cds.cern.ch/record/1443882/files/LHCB-TDR-012.pdf

SuperKEKB: Accelerator Design

Low emittance lattice

Replace short dipoles with longer ones (LER)

Prog. Theor. Exp. Phys. 2013, 03A011

New superconducting/ permanent final focusing quadrupole near the IP

Add RF systems for higher beam current

New positron capture section

SuperKEKB: Progress

Strategy for SuperKEKB

Belle II Detector

CsI(TI) EM calorimeter: waveform sampling electronics, pure CsI for endcaps

Vertex detector: 2 pixel layers (DEPFET) 4 double-sided strip layers K_L and muon counter: scintillator + Si-PM for endcaps

> Aerogel RICH (forward)

Time-of-propagation

(barrel)

Central drift chamber: longer lever arm smaller cell size

Details in TDR *arXiv:1011.0352*

SuperKEKB and Belle II Schedule

Goal and Timelines of SuperKEKB / Belle II

Belle II Collaboration

23 countries, 97 institutions, ~600 collaborators

Summary

- During next decades Belle II at SuperKEKB and LHCb will collect high-statistics data on Heavy Flavor
- Complementary to direct searches for New Physics at LHC
- Experimental sensitivity will be comparable to or better than current theoretical uncertainties
- >Essential progress of theoretical developments during last years was crucial to understand current experimental results
- >Further theoretical developments are very important to fully benefit from future measurements

Backup Slides

More Observables in $B \rightarrow K^{(*)}\mu^+\mu^-$ from LHCb

> Observables with reduced theoretical uncertainty from hadronic form factors

Phys. Rev. Lett. 111, 191801 (2013), 1fb⁻¹

> 3.7 sigma discrepancy between the measurement and SM predictions

> 2.8 sigma significance considering 24 independent measurement

$B \rightarrow K^{(*)}\mu^+\mu^-$ from LHCb (3 fb⁻¹)

> $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^0 \rightarrow K^0 \mu^+ \mu^-$ decays also consistent with SM but slightly below the theoretical predictions

arXiv:1403.8044

> Analysis of 1 fb⁻¹ data from 2011:

• A_i consistent with zero for K^* modes and 4.4 σ below zero for K modes

> Recent A, results based on 3 fb⁻¹ consistent with the SM

Prospects of LHCb, Belle II and Other Experiment

LHCb Upgraded Readout Architecture

LHCb Vertex Detector Upgrade

- Perform equal or better in harsher conditions
 - Cope with radiation damage and occupancies
 - Low material budget
 - Fast and efficient reconstruction at hardware level

Choice

- Silicon-pixel detector
- Micro-channel cooling (<-20°C)
- Closer to the beam (3.5 mm)

LHCb Upgrade Plan

LHCb

Achievements of e⁺e⁻ B Factories

 $>e^+e^-$ B Factories: Belle at KEKB and BaBar at PEP-II

- Successful confirmation of Kobayashi-Maskawa mechanism of CP violation in the Standard Model
 - Nobel Prize for Kobayashi and Maskawa in 2008
- Precise measurements of CKM elements and angles of UT
- >Much more
 - Measurements of rare B-decay modes
 - $b \rightarrow s$ transitions: new sources of CPV
 - Observation of D mixing (charm factory)
 - Searches for LFV tau decays (tau factory)
 - Observation of exotic hadrons

Precision Tests of CKM

- >Much more improved measurements
- >Overconstrain Unitarity Triangle
- >Discrepancy between measurements \rightarrow new physics?

2012 (~1000 fb⁻¹ at Belle and BaBar)

Expected constraint at 50 ab⁻¹

Search for New Physics: LFV in Tau Decays

- Strongly suppressed in SM Br ~ 10^{-53} - 10^{-49}
- In New Physics models LFV up to $O(10^{-9}-10^{-7})$

Current limits from B factories

>With 50ab⁻¹ sensitivity will reach *O*(10⁻⁹)

 $\mathbf{O} \tau \rightarrow \mu \gamma$

Broad Physics Program at Belle II

Observable	SM	Theory	Present	Future	Future	
$ V = [K \rightarrow -\ell_{1}]$	input	0.5% > 0.1%-	0.2246 ± 0.0012	0.107	V. fasteru	
$ V_{us} [R \to \pi \ell \nu]$	input	$0.5\% \rightarrow 0.1\%$ Latt	0.2240 ± 0.0012	107	Com on D	
$\begin{vmatrix} V_{cb} \end{vmatrix} \begin{bmatrix} D \to \Lambda_c \ell \nu \end{bmatrix}$	input	1007 107	$(41.34 \pm 0.73) \times 10^{-3}$	170	Super-B	
$ V_{ub} [B \to \pi \ell \nu]$	input	$10\% \rightarrow 3\%$ Latt	$(3.38 \pm 0.36) \times 10^{-1}$	4%	Super-B	
$\frac{\gamma \qquad [B \to DK]}{\alpha}$	input	< 1	$(70_{-30}^+)^{\circ}$	3	LHCD	
$S_{B_d \to \psi K}$	$\sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb	
$S_{B_s \to \psi \phi}$	0.036	$\lesssim 0.01$	$0.81_{-0.32}^{+0.32}$	0.01	LHCb	
$S_{B_d \to \phi K}$	$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb	-
$S_{B_{\sigma} \to \phi \phi}$	0.036	$\lesssim 0.05$		0.05	LHCb	
$S_{B_d \to K^* \gamma}$	few \times 0.01	0.01	-0.16 ± 0.22	0.03	Super-B	
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01		0.05	LHCb	
A^d_{SL}	$-5 imes10^{-4}$	10^{-4}	$-(5.8\pm3.4) imes10^{-3}$	10^{-3}	LHCb	
$A^s_{ m SL}$	$2 imes 10^{-5}$	$< 10^{-5}$	$(1.6\pm 8.5) imes 10^{-3}$	10^{-3}	LHCb	
$A_{CP}(b ightarrow s \gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B	
${\cal B}(B o au u)$	$1 imes 10^{-4}$	$20\% \to 5\%_{\rm Latt}$	$(1.73\pm0.35) imes10^{-4}$	5%	Super-B	
${\cal B}(B o \mu u)$	$4 imes 10^{-7}$	$20\% \to 5\%_{\rm Latt}$	$< 1.3 imes 10^{-6}$	6%	Super-B	
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3 imes 10^{-9}$	$20\% \to 5\%_{\rm Latt}$	$< 5 imes 10^{-8}$	10%	LHCb	
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	$1 imes 10^{-10}$	$20\% \to 5\%_{\rm Latt}$	$< 1.5 imes 10^{-8}$	[?]	LHCb	
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb	
$B \to K \nu \bar{\nu}$	$4 imes 10^{-6}$	$20\% \to 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B	
$ q/p _{D-{ m mixing}}$	1	$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B	
ϕ_D	0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B	
$\mathcal{B}(K^+ o \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory	
${\cal B}(K_L o \pi^0 u ar u)$	$2.6 imes10^{-11}$	10%	$<2.6\times10^{-8}$	[?]	K factory	
$R^{(e/\mu)}(K o \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm0.014) imes10^{-5}$	0.1%	K factory	
${\cal B}(t o c Z, \gamma)$	$\mathcal{O}\left(10^{-13} ight)$	$\mathcal{O}\left(10^{-13}\right)$	$< 0.6 \times 10^{-2}$	$\mathcal{O}\left(10^{-5}\right)$	LHC $(100\mathrm{fb}^{-1})$	
$B(B \rightarrow Xs\gamma)$ $B(B \rightarrow Xd\gamma)$ $S(B \rightarrow \rho\gamma)$ $B(\tau \rightarrow \mu\gamma)$ $B(B + \rightarrow D\tau\nu)$ $B(Bs \rightarrow \gamma\gamma)$ $sin2\theta W @ Y(45)$			0.1	6% 20% 0.15 3 ·10 ⁻⁹ 3% 25 ·10 ⁻⁶ 3 ·10 ⁻⁴	Super-B Super-B Super-B Super-B (90% U Super-B Super-B (5 ab-1 Super-B	J.L.) L)

Physics at Super B factory: arXiv:1002.5012 arXiv:1008.1541

>Belle II and LHCb will provide complementary information

Adopted from G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

Super B factory
LHCb
K experiments

SuperKEKB Schedule

Experimental Challenges at High Luminosity

>High background (10-20 times higher than at Belle)

- Fake hits, pile up, radiation damage
- >Higher trigger rate
 - Typical Level1 trigger rate: 20kHz
 - High performance DAQ
- >Important improvements
 - Hermeticity for full reconstruction analyses
 - IP and secondary vertex resolution
 - $K_{_S}$ and $\pi^{\scriptscriptstyle 0}$ identification efficiency
 - Improve Kaon/pion separation
- >Details in TDR *arXiv:1011.0352*

Belle II in Comparison with Belle

Pixel Vertex Detector (PXD)

- DEPFET technology: thin (75µm) sensors
- >Work in high occupancy close to the interaction region
- >Fast readout

PXD design

PXD mockup

Silicon Vertex Detector (SVD)

>Double-sided silicon strip detectors

- > Pipelined readout to reduce dead time, pile-up rejection
- >Larger acceptance (by 30%) for detection of pions from K_s decay \rightarrow significant improvement in $\delta S(K_s \pi^0 \gamma)$

SVD design

SVD mockup

Vertex Detector: PXD+SVD

Vertex Detector: DESY Beam Test in January 2014

>Read out "Region Of Interest" scheme in PXD works (In order to reduce the Gbit/s data volume from pixels)

Central Drift Chamber (CDC)

- >Smaller cells near beam pipe
- Extended outer radius for better momentum resolution
- Faster readout electronics to reduce dead time

 $\begin{aligned} \sigma_p/p &\sim 0.3\% + 0.1\% \times p(\text{GeV}) \text{ in } B = 1.5\text{T} \\ \sigma(\text{d}E/\text{d}x) &\sim 6\% \end{aligned}$

	Belle	Belle II
Innermost sense wire	R=88mm	R=168mm
Outermost sense wire	R=863mm	R=1111.4m m
Number of layers	50	56
Total number of sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
Sense wires	W(Ø30µm)	W(Ø30µm)
Field wires	Al(Ø120µm)	Al(Ø120µm)

Barrel PID: Time of Propagation Detector (TOP)

Endcap PID: Aerogel RICH

- Novel proximity-focusing two-layer radiator
- Employ multiple layers with different refractive indices
- Cherenkov images from individual layers overlap on the photon detector

Electromagnetic Calorimeter

- >Barrel: reuse existing CsI(TI)
- >Readout electronics:
 - Upgrade to 2 MHz waveform sampling
 - Online signal processing
- Endcaps: considering upgrade to pure Csl
- >Better performance & radiation hardness
- >Improved energy resolution

Better signal-to-background separation

K and µ Detection (KLM)

- >End-caps upgrade: Resistive Plate Chambers → scintillator-based KLM
- >Scintillators + SiPM → better beambackground tolerance
- >Barrel KLM: some RPC layers may be replaced as background increases with luminosity

Software Upgrade

- New framework with dynamic module loading, parallel processing, python steering, root I/O, and use of GRID
- >Full detector simulation with Geant4
- >Tracking with GenFit
- >Alignment with Millepede II

