Belle II

Christopher Hearty University of British Columbia / IPP February 20, 2014

Belle / BaBar

- BaBar: PEP-II e⁺e⁻ collider, Stanford linear accelerator center, 1999–2008.
 Belle: KEKB collider, KEK laboratory, Tsukuba, Japan, 1999–2010.
- Core program: weak force, especially CP violation
- >500 publications (BaBar); >400 (Belle)

The announcement of the 2008 Nobel prize in physics cited the experimental results from Belle and BaBar

Belle II

- Upgrade of Belle, located at SuperKEKB.
- 40x the peak luminosity of KEKB; 30x the combined integrated luminosity of BaBar + Belle.

- 97 institutions in 23 countries, 600 collaborators, including 320 PhD physicists.
- Canada joined in March 2013; Italy and Mexico in July 2013 (SuperB refugees).

Physic goals

 To seek evidence for new physics through a wide range of measurements sensitive to the presence of virtual heavy particles.

- Asymmetries, rare decays, forbidden decays. Modes with well-known uncertainties in the standard model, and testable predictions in new physics models.
- Continued exploration of the weak force and CP violation.

Subset of the modes that can be measured by Belle II

Observables	Belle	Bell	Belle II	
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 3\%$	
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>> 5\sigma$	
R(D au u)	$\pm 16.5\%$	$\pm 5.2\%$	$\pm 2.5\%$	
$R(D^* au u)$	$\pm 9.0\%$	$\pm 2.9\%$	$\pm 1.6\%$	
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	
$\mathcal{B}(B \to X_d \gamma) \ [10^{-6}]$				
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32\pm 0.21\pm 0.09$	± 0.11	± 0.06	
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	
$\tau \to \mu \gamma \ [10^{-8}]$	< 4.5		< 0.1	
$ au o e\gamma \ [10^{-8}]$	< 12.0			
$\underline{\tau \to \mu \mu \mu \ [10^{-9}]}$	< 21.0	< 4.5	< 0.9	

Complementarity

- If the LHC sees direct evidence of new physics, the corresponding deviations from the standard model predictions can identify its nature.
- LHCb: great B and charm statistics, charged particle reconstruction.
- Belle II: well-defined initial state; ability to reconstruct final states with photons (π^0 mesons) and neutrinos.

Fully reconstructed B sample

- A unique and powerful tool of Belle II
- Can also use $B \to D^{(*)} \ell \nu \text{ decays}$

 For signal events there should be ~0 additional energy present in the calorimeter. $B^+ \to \tau^+ \nu_\tau$

• Enhance or suppress

$$\mathcal{B} = \mathcal{B}^{SM} \times (1 - m_B^2 \tan^2 \beta / m_{H^{\pm}}^2)^2$$
$$\mathcal{B}^{SM} = 1.0 \times 10^{-4} \ (\tau)$$
$$= 4.5 \times 10^{-7} \ (\mu)$$
$$= 8 \times 10^{-12} \ (e)$$

• Same size effect for $B^+ \to \tau^+ \nu$ and $B^+ \to \mu^+ \nu$

SuperKEKB

- Huge increase in luminosity comes from a 2x increase in current and a large decrease in beam size. Upgrades to most systems.
- 2.6A of e⁻ @ 7 GeV
 3.6A of e⁺ @ 4 GeV
 8 x 10³⁵ cm⁻²s⁻¹

Schedule

- Phase 1 (Jan May 2015)
 No superconducting IR magnets;
 no Belle II.
 - Basic tuning, vacuum scrubbing
- Phase 2 (Feb June 2016)
 Full accelerator; Belle II except vertex detector.
 - beam collision tuning, background studies
- Phase 3 (late 2016) First physics. $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Luminosity projection

Backgrounds

- High luminosity \Rightarrow high rate of $e^+e^- \rightarrow \gamma e^+e^-$
 - radiation damage, photosensor aging, pileup

The Belle II detector

• Upgrades aim for best possible performance in the face of high event rates and high backgrounds.

itop

• Particle ID using Cherenkov radiation in fused silica bars. measure t and x of single $\boldsymbol{\gamma}$ with pixelated PMT time/ time (ns) 21. need resolution < 100 ps 20.5 20 500 ps 18.5 450 500 300 350 400

position

iTOP status

- Procurement of precision optical components has been difficult, but production is now under way.
- Successful review of complex opto-mechanical system last week.
- DOE CD-2/3 review in March.
- ~1/2 of iTOP will be in place for first physics run. Remainder will be installed in summer 2017.

• First physics run may not be at the Y(4S).

Calorimeter

- Precise measurements of γ (π^0) and E_{extra} is critical to our physics program, particular with respect to LHCb.
- Belle II is reusing the CsI(TI) crystal calorimeter from Belle, with new digitization and waveform fitting electronics.
 Excellent resolution, but quite slow.

Csl crystal

Pure Csl upgrade

- Canadian and Italian groups are planning to upgrade the forward endcap calorimeter to pure Csl.
- 30x faster signals (so 30x less pileup) but 30x less light.
- Fine mesh PMTs with preamps/HV dividers, new shapers/waveform fitting.

- Preamp & digitizing electronics under development at U. Montreal.
- Aim for a 25-crystal prototype beam test at TRIUMF in summer 2015.
- Upgrade summer 2018.

Fine mesh PMT with prototype preamp on pure Csl crystal

M11 test beam at TRIUMF

Summary

- Belle II has a physics program with unique capabilities and sensitivities to new physics.
- SuperKEKB is on track for the start of commissioning in less than one year.
- Detector construction is well underway, and moving towards integration.
- The Canadian group is working towards an upgrade of the calorimeter that will improve its performance at the highest luminosities.

Canadian group

- U. British Columbia: C. Hearty, J. McKenna, T. Mattison,
 D. Fujimoto
- U. Victoria: M. Roney, R. Kowalewski, R. Sobie,
 A. Beaulieu, S. de Jong, S. Longo, F. Berghaus,
 P. Poffenberger
- McGill U.: S. Robertson, A. Warburton, R. Cheaib,
 R. Seddon
- U. Montreal: J.P. Martin, P. Taras, N. Starinski

Backup slides

$$\tau^+ \to \mu^+ \gamma$$

Unambiguous sign of new physics. Many charged flavor violating decays available.

New superconducting final focus magnets near the interaction point

Improved monitors and controls

Replace beam pipes with TiN-coated beam pipes with antechambers

Redesigned lattice

New e⁺ damping ring

Additional RF for beam current

Vertex detector

- Two layers of pixels (DEPFETs) and four layers of silicon strips.
 - first layer at r = 14 mm; much less material than Belle DEpleted P-channel FET

Vertex detector beam test

- One pixel layer with four layers of silicon strips with full readout chain. In a 1 T solenoid.
- Successful test, including "regions of interest" readout. To reduce data rate, project SVD tracks into pixels and read only those regions.

• Focus now on production; little schedule contingency.

First year physics plan

- B physics topics require high-momentum particle ID more than other topics. We are considering alternatives to the Y(4S) for the first run, late 2016 – early 2017. Maybe few hundred fb⁻¹.
- Y(2S): dark forces, light Higgs K.G. Chetyrkin et al PRD 80 (2009) 074010
- Y(6SarXiv:0907:2130jum, Z_b (see also arXiv:1010.6157)
- r_B scan

Y(3S): conventional bottomonium

Computing

- Raw data storage and processing at KEK; duplicated at PNNL. Physics data distributed for analysis. Grid + cloud for MC production.
- Hardware requirements are comparable LHC.

