Search for radiative D_s decays

N Sushree Ipsita On behalf of Belle II collaboration

Indian Institute of Technology, Hyderabad, India, ph19resch02005@iith.ac.in

Abstract. The study of weak radiative decays of charmed mesons is still in its developing stage. The weak decays of D mesons pose challenges due to significant final-state interactions. However, decays mediated by $c \rightarrow u\gamma$ transitions can be affected by potential contributions coming from the non-minimal supersymmetry, which is an new physics scenario. The ratio of branching fractions for radiative D^0 decays could be violated already in the SM framework, while a similar ratio for D_s^+ radiative decays offers much better prospects for new physics. We present herein the first sensitivity study of the radiative charm decays $D_s^+ \rightarrow \rho^+ \gamma$ and $D_s^+ \rightarrow K^{*+}\gamma$ with data collected by the Belle experiment.

Keywords: radiative, charm decays, Belle

1 Introduction

In the Standard Model (SM), the physics of charmed mesons faces certain challenges compared to strange and beauty mesons because the CP asymmetries and $D^0 - \overline{D}^0$ oscillations are small. Further, the weak decays of D mesons are difficult to investigate due to significant final-state interactions. However, it has been pointed out that the oscillations and $c \to u\gamma$ decays might have some contributions coming from the non-minimal supersymmetry (an NP scenario). Therefore, one can search for NP using $c \to u\gamma$ transitions. It was suggested that the NP would result in a deviation from the ratio of branching fractions [1]:

$$R_{\rho/\omega} \equiv \frac{\Gamma(D^0 \to \rho^0/\omega\gamma)}{\Gamma(D^0 \to \bar{K}^{*0}\gamma)} = \frac{\tan^2\theta_c}{2},\tag{1}$$

where θ_c is the Cabibbo angle. In order to find the best mode to study $c \to u\gamma$ transitions, the ratios between various Cabibbo-suppressed and Cabibbo-allowed radiative decays of charmed mesons are calculated within the SM. It has been noticed that Eq. (1) could be violated already in the SM framework because of a large, unknown correction, while a similar ratio for D_s^+ radiative decays

$$R_K \equiv \frac{\Gamma(D_s^+ \to K^{*+}\gamma)}{\Gamma(D_s^+ \to \rho^+\gamma)} = \tan^2\theta_c, \tag{2}$$

offers a much better probe for an NP signal, as the latter is less sensitive to the SM correction [2]. Long-distance(LD), non-perturbative processes dominate these decays, potentially enhancing Branching Fractions(BFs), basically 2 N. S. Ipsita et al.

to test the Quantum Chromodynamics(QCD) based calculations of LD dynamics. The BF of $D_s^+ \rightarrow \rho^+ \gamma \ [D_s^+ \rightarrow K^{*+} \gamma]$ mode is expected to lie within the range of $O(10^{-5}) - O(10^{-3}) \ [O(10^{-8}) - O(10^{-4})]$, according to the predictions of different theoretical models [7], which are quite divergent for the D_s decay mode. The BF of $D_s^+ \rightarrow \gamma \rho(770)^+$ is measured to be $(2.2 \pm 0.9 \pm 0.2) \times 10^{-4}$, corresponding to an upper limit of 6.1×10^{-4} at the 90% confidence level by BESIII collaboration [8]. We present herein the first sensitivity study of these radiative D_s meson decays with data collected by the Belle experiment.

2 KEKB and Belle

The Belle detector was located at an interaction point of the KEKB asymmetricenergy e^+e^- collider. It was a large-solid-angle magnetic spectrometer comprising six subdetectors [3], namely silicon vertex detector, central drift chamber, aerogel Cherenkov counter, time-of-flight counter, CsI(Tl) crystal electromagnetic calorimeter, and K_L^0 and muon detector.

3 Analysis Strategy

We optimize the selection of signal candidates using simulated samples generated with the EvtGen [4] and Geant packages [5]. We reconstruct D_s^+ from $D_s^+ \to \rho^+ \gamma$ and $D_s^+ \to K^{*+} \gamma$, where $\rho^+ \to \pi^+ \pi^0$, $K^{*+} \to K_S^0 \pi^+$ and $K^{*+} \to K^+ \pi^0$. These studies are based on MC samples corresponding to an integrated luminosity of 711 fb⁻¹. The kinematic variable that distinguishes signal from background is the invariant mass of D_s^+ . A π^0 veto is implemented to suppress the huge background coming from π^0 decays. We perform a dedicated background MC study in which the continuum background is found to be dominant. We employ multivariate analysis (MVA) based on the FastBDT package [6] to get rid of uds background, i.e., $e^+e^- \to u\bar{u}, d\bar{d}, s\bar{s}$. After requiring the MVA output to be greater than 0.4 (0.5) for the $D_s^+ \to \rho^+ \gamma$ ($D_s^+ \to K^{*+} \gamma$) decay mode, we find a rejection of 65% (76%) of uds background at the cost of 10% (24%) of signal loss. The reconstruction efficiency is 0.5\%, 3.1% and 0.8% for $D_s^+ \to \rho^+ \gamma$ and $D_s^+ \to K^{*+} \gamma$ modes. For $D_s^+ \to [\rho^+ \to \pi^+ \pi^0] \gamma$ and $D_s^+ \to \rho^+ \eta$ and $D^{*+} \to D^0 \pi^+$, while for $D_s^+ \to [K^{*+} \to K_s^0 \pi^+] \gamma$, it is mostly from $D^0 \to K_S^0 \pi^0$ and $D^0 \to K_S^0 \eta$ decay modes.

4 Control Sample Study

We use the peaking backgrounds $D_s^+ \to \rho^+[\eta \to \gamma\gamma]$, $D^{*0} \to [D^0 \to K_S^0 \eta]\gamma$ and $D^{*0} \to [D^0 \to K_S^0 \pi^0]\gamma$, as our control sample to validate the signal extraction procedure and to calibrate possible differences in the signal resolution between data and simulation. Figure 1 shows the unbinned maximum-likelihood fit performed on M_{D_s} and M_{D^0} for (a) $D_s^+ \to \rho^+\eta$, (b) $D^0 \to K_S^0 \pi^0$, and (c) $D^0 \to K_S^0 \eta^0$

Fig. 1. Fitted distribution of Invariant mass of D^0 and D_s^+ for (a) $D^0 \to K_S^0 \pi^0$, (b) $D^0 \to K_S^0 \eta$ and (c) $D_s^+ \to \rho^+ \eta$ decay modes.

decay modes using MC samples corresponding to an integrated luminosity of 711 ${\rm fb}^{-1}.$

5 Signal Extraction

We have performed 1D unbinned maximum likelihood fit to extract signal yield. Figure 2 shows the total fitted distribution of M_{D_s} for (a) $D_s^+ \to \rho^+ \gamma$, (b) $D_s^+ \to [K^{*+} \to K_s^0 \pi^+] \gamma$ and (c) $D_s^+ \to [K^{*+} \to K^+ \pi^0] \gamma$ decay modes, respectively.

6 Preliminary Results and Outlook

We are expecting 150-200, 20-30 and 8-12 events for $D_s^+ \to \rho^+ \gamma$, $D_s^+ \to [K^{*+} \to K_s^0 \pi^+] \gamma$ and $D_s^+ \to [K^{*+} \to K^+ \pi^0] \gamma$ decay modes, assuming a branching fraction of $10^{-4}(10^{-5})$, with a data sample corresponding to an integrated luminosity of 921 fb⁻¹.

Fig. 2. Fitted distribution of Invariant mass of D_s^+ for $(a)D_s^+ \to \rho^+\gamma$, $(b)D_s^+ \to [K^{*+} \to K_s^0\pi^+]\gamma$ and $(c)D_s^+ \to [K^{*+} \to K^+\pi^0]\gamma$ decay modes.

References

- Bigi, I.I.:Weak Decays Of Charm Hadrons: The Next Lesson On QCD and Possibly More!.hep-ph/9311206 (1993). doi.org/10.48550/arXiv.hep-ph/9311206
- 2. Bajc, B., Fajfer, S., Oakes. R.J.: $c \to u\gamma$ in Cabibbo suppressed D meson radiative weak decays. Phys. Rev. D. 54, 5883 (1996). doi/10.1103/PhysRevD.54.5883
- Abashian, A. et al.: The Belle detector. Nucl. Instrum. Meth. A. 479, 117-232 (2002). doi.org/10.1016/S0168-9002(01)02013-7
- Lange, D. J.:The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A. 462, 152-155 (2001). doi.org/10.1016/S0168-9002(01)00089-4
- Brun, R., Bruyant, F., Maire, M., McPherson, A. C., Zanarini, P.:GEANT3. CERN-DD-EE-84-1 (1987).
- Hocker, A. et al.:TMVA Toolkit for Multivariate Data Analysis. physics/0703039, CERN-OPEN-2007-007 (2007). doi.org/10.48550/arXiv.physics/0703039
- Boer, S.de., Hiller, G.:Rare radiative charm decays within the standard model and beyond. (2017). doi.org/10.1007/JHEP08%282017%29091
- 8. Ablikim, M.et al.:Search for the radiative decay $D_s^+ \to \rho \gamma(770)^+$. (2024). doi.org/10.48550/arXiv.2408.03980