Study the particle identification performance for $K_s^0 \longrightarrow \pi^+ \pi^-$ decays using sPlot method 2

1

3

4

5

6

7

Sanjeeda Bharati Das^{1*}

(on behalf of the Belle II Collaboration) ¹Malaviya National Institute of Technology Jaipur, India *Address correspondence to: 2018rpy9055@mnit.ac.in

Abstract

The $K_s^0 \longrightarrow \pi^+ \pi^-$ sample gives access to low momentum pions, which are 8 useful for studying the particle identification performance. In this work, we have 9 validated the sPlot technique using Belle II simulated sample for $K_s^0 \longrightarrow \pi^+ \pi^-$ 10 at integrated luminosity of 10fb^{-1} . The Belle II is the upgraded experimen-11 tal facility at SuperKEKB, KEK, Japan. In this work, we study the relative 12 difference between true efficiencies and that obtained from the sPlot technique 13 for different pion-identification criteria in bins of momentum and cosine of the 14 polar angle. This study is now included as part of the Belle II Systematic 15 Correction Framework. 16

17 **1** Introduction

¹⁸ An inclusive sample of $K_s^0 \longrightarrow \pi^+\pi^-$ decays provides access to a large sample of ¹⁹ charged pions with momentum below 1 GeV/c. Such pions can be used to study ²⁰ the performance of the particle-identification (PID) algorithms at low momentum. ²¹ The aim of this work is to develop an analysis method based on the sPlot tech-²² nique [1], in simulation and to study the PID performance in the context of the Belle ²³ II Systematic Correction Framework [2]. The Belle II [3] is an experimental facility ²⁴ at SuperKEKB [4], located in Tsukuba, Japan.

$_{\scriptscriptstyle 25}$ 2 Reconstruction of $K^0_s \longrightarrow \pi^+\pi^-$

Using 10 fb⁻¹ of centrally produced Monte Carlo events, pairs of oppositely charged pion tracks are combined to reconstruct the mass of K_s^0 , denoted by $m(\pi^+\pi^-)$. The K_s^0 decay time is required to exceed 0.007 ns, to suppress the combinatorial background. The transverse distance of the K_s^0 decay vertex from the origin is required to be less than 3.5 cm, corresponding to the distance of the first layer of the Belle II Silicon Vertex Detector(SVD) [3].

32 **3** Results

The $m(\pi^+\pi^-)$ peak is modelled using the sum of a Gaussian and a Johnson's S_U [5] 33 function and the background is modelled using a 1^{st} order Chebychev polynomial. 34 A binned least squares fit is performed over the entire momentum range as shown 35 in Figure 1 (left). The sWeights thus computed from this fit are used to compute 36 mc systematic error, defined as: $mc_syst_error = (\epsilon_{sw} - \epsilon_{tm})/\epsilon_{tm}$, where ϵ_{sw} is the 37 sWeighted efficiency (from splot technique) and ϵ_{tm} is the efficiency from truth match-38 ing. It is observed that mc_{syst_error} increases in the momentum range [0.5, 3.5] 39 GeV/c with the maximum difference being about 7.5% as shown in Figure 1 (right). 40 This dependence of $mc_{-syst_{-}error}$ in pion momenta may be due to the presence of 41 correlations between $m(\pi^+\pi^-)$ and momentum of the pions. The impact of these cor-42 relations are evaluated by computing sWeights based on independent fits to $m(\pi^+\pi^-)$ 43 in disjoint bins of momenta: [0.5, 1.5] GeV/c and [1.5, 3.5] GeV/c as shown in Fig-44 ure 2. No dependence of *mc_syst_error* on pion momenta is observed, which implies 45 that pion identification efficiencies obtained from sWeights are in agreement with that 46 obtained from truth matching. 47

Figure 1: Distribution of $m(\pi^+\pi^-)$ (left), with fit projections overlaid distributions of mc_syst_error in bins of pion momenta (right).

Figure 2: mc_syst_error in bins of pion momenta: [0.5, 1.5] GeV/c (left) and [1.5, 3.5] GeV/c (right).

48 4 Summary

- ⁴⁹ The sPlot technique has been validated using an inclusive sample for $K_s^0 \longrightarrow \pi^+ \pi^-$.
- ⁵⁰ The truth-matching procedure and the sPlot technique are consistent.

51 References

- ⁵² 1. Pivk M and Le Diberder FR. SPlot: A Statistical tool to unfold data distributions.
- ⁵³ Nucl. Instrum. Meth. A 2005;555:356–69.
- ⁵⁴ 2. Belle II Systematic Corrections Framework.
- ⁵⁵ 3. Abe T et al. Belle II Technical Design Report. 2010.
- ⁵⁶ 4. Akai et al. SuperKEKB collider. Nucl. Instrum. Meth. 2018;907:188–99.
- 57 5. Johnson NL. Systems of frequency curves generated by methods of translation.
- ⁵⁸ Biometrika 1949;36:149–76.