
Eur. Phys. J. C manuscript No.
(will be inserted by the editor)

Punzi-loss
A non-differentiable metric approximation for sensitivity optimisation in the search for new
particles

F. Abudinén14, M. Bertemes16, S. Bilokin18, M. Campajola4,9, G. Casarosa3,11,
S. Cunliffe2, L. Corona3,11, G. De Pietro12, S. Dey20, M. Eliachevitch21, P. Feichtinger16,
T. Ferber15, J. Gemmler15, P. Goldenzweig15, A. Gottmann15, E. Graziani12, H. Haigh16,
M. Hohmann22, T. Humair19, G. Ingugliaa,16, J. Kahn7, T. Keck15, I. Komarov2,
J.-F. Krohn22, T. Kuhr18, S. Lacaprara10, K. Lieret18, R. Maiti16, A. Martini2, F. Meier5,
F. Metzner15, M. Milesi22, S.-H. Park8, M. Prim21, C. Pulvermacher15, M. Ritter18,
Y. Sato8, C. Schwanda16, W. Sutcliffe21, U. Tamponi13, F. Tenchini11, P. Urquijo22,
L. Zani1, R. Žlebčı́k6, A. Zupanc17

1Aix Marseille Universite, CNRS/IN2P3, CPPM, 13288 Marseille, France
2Deutsches Elektronen-Synchrotron, Hamburg, Germany
3Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
4Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
5Duke University, Durham, USA
6Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
7Helmholtz AI, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
8High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
9INFN Sezione di Napoli, I-80126 Napoli, Italy
10INFN - Sezione di Padova, Padova, Italy
11INFN Sezione di Pisa, I-56127 Pisa, Italy
12INFN - Sezione di Roma Tre, Roma, Italy
13INFN - Sezione di Torino, Torino, Italy
14INFN - Sezione di Trieste, Trieste, Italy
15Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, Karlsruhe, Germany
16Institute of High Energy Physics, 1050, Vienna, Austria
17Jožef Stefan Institute, Ljubljana, Slovenia
18Ludwig Maximilians University, Munich, Germany
19Max-Planck-Institut für Physik, München, Germany
20Tel Aviv University, Tel Aviv, Israel
21University of Bonn, Bonn, Germany
22University of Melbourne, Melbourne, Australia
Received: date / Accepted: date

Abstract We present the novel implementation of a non-
differentiable metric approximation and a corresponding loss-
scheduling aimed at the search for new particles of unknown
mass in high energy physics experiments. We call the loss-
scheduling, based on the minimisation of a figure-of-merit
related function typical of particle physics, a Punzi-loss func-
tion, and the neural network that utilises this loss function
a Punzi-net. We show that the Punzi-net outperforms stan-
dard multivariate analysis techniques and generalises well
to mass hypotheses for which it was not trained. Our re-
sult constitutes a step towards fully differentiable analyses in
particle physics. This work is implemented using PyTorch,
and we provide users full access to a public repository con-
taining all the codes.

ae-mail: gianluca.inguglia@oeaw.ac.at (corresponding author)

1 Introduction

The standard model (SM) of particle physics is the theo-
retical framework that describes fundamental interactions
and the fundamental constituents of matter. Although suc-
cessful in predicting phenomena, there is a general consen-
sus that this framework is not a complete description of na-
ture, and new physics (NP) has to exist. Searches for NP
beyond the SM can be grouped into two main categories:
searches for direct production and decays of new, unknown
particles; and searches for deviations from the theoretical
predictions in precision measurements. When searching for
new particles, for example in a collider experiment, one of
the main challenges is to correctly reconstruct and iden-
tify the new particles (the signal) and reject any (or most)



2

contributions from potential background sources. This is a
common problem referred to as event classification. A com-
mon approach to correctly classify a signal with respect to
background uses Monte Carlo (MC) simulation to generate
signal- and background-like event distributions. The use of
MC simulation can help find underlying features or patterns
in the signal and the background distributions that allow
one to disentangle the two (possibly) unambiguously. In the
last decade, the use of advanced data analysis methodolo-
gies, such as multivariate analysis (MVA) methods, has of-
ten largely improved analysis signal selection power, allow-
ing for more precise analyses, often performed in a shorter
time. Typical MVA methods in use in the field of particle
physics include, but are not limited to, decision trees, boosted
decision trees (BDT) [1], or shallow and deep artificial neu-
ral networks (ANNs) [2]. This paper focuses on the imple-
mentation of ANNs. We propose and describe how to im-
plement a new loss function, called Punzi-loss, based on the
so-called Punzi figure-of-merit (FOM) [3]. We henceforth
refer to a neural network trained with the Punzi-loss func-
tion as a Punzi-net. As a benchmark study to test the perfor-
mance of the Punzi-loss and compare it to other techniques,
we consider the search for invisible decays of the hypothet-
ical Z’ boson produced in the reaction e+e−→ µ+µ−Z’ at
the Belle II experiment [4,5] at the SuperKEKB collider [6],
based on MC simulations.

2 Neural networks

Artificial Neural Networks (ANNs) describe a broad class
of neural network implementations (e.g. convolutional neu-
ral networks, transformers, etc.), used in a variety of ap-
plications ranging from image classification in the case of
CNNs to natural language processing with transformers. In
this work, we focus on a fully connected feed-forward neu-
ral network for our experiments. We nonetheless emphasise
that the concepts outlined in this work apply to all neural
network implementations that use backpropagation.

A Neural Network comprises a collection of connected
neurons. In a fully connected neural network, these consti-
tute a series of layers in which each neuron is connected to
all those in both the previous and subsequent layers. Each
neuron describes a mathematical function that produces an
output dependent on those input connections and some unique
bias, defined as

al
j = σ

(
∑
k

wl
jkal−1

k +bl
j

)
. (1)

Where wl
jk is the weighting of the connection to the kth

neuron in the previous (l − 1) layer, bl
j is the bias and σ

is the activation function. A variety of different activation

functions can be applied here, and most have specific traits
that may be desirable depending on the application. Com-
monly used examples include sigmoid, rectified linear acti-
vation (ReLU), or hyperbolic tangent functions. The key re-
quirements are that they are non-linear and have a derivative
defined everywhere. Using Eq. 1, a network of individual
neurons is able to map input variables to some desired out-
put. For this to be possible, however, the weight and bias
parameters must be optimised. In the implementation we
present here, this is done via supervised training, whereby
training data, x, is passed to the network along with the set
of corresponding labels, y. The actual output of the network,
f (x) = ŷ, can then be compared with this desired output to
measure how well it maps input data. This comparison is
quantified by way of a loss function, a commonly used ex-
ample of which is the Binary Cross Entropy loss,

L =−y ln ŷ+(1− y) ln(1− ŷ), (2)

where y ∈ {0,1} and ŷ ∈ [0,1]. With this measure of the
error, the training process becomes a minimisation problem:
what set of weights and biases will minimise the loss and
therefore provide the most effective network? This is solved
by employing a method such as stochastic gradient descent,
by which the parameters can be iteratively adjusted in the
direction opposite that of the loss function’s gradient,

wn+1 = wn−η
δL

δwn
and (3)

bn+1 = bn−η
δL
δbn

, (4)

where η is the learning rate, the step size by which the pa-
rameters are adjusted at each iteration of the learning pro-
cess. Each of these iteration steps constitutes a complete
pass through a randomly sampled batch from the full train-
ing data set, a pass through the entirety of which is referred
to as an epoch. The derivatives δL

δw j
and δL

δb j
are calculated

through use of the backpropagation algorithm. This starts
from the final layer and utilises the chain rule to calculate
all the derivatives incrementally through one full backward
pass to the first layer. The key is the careful selection of a
loss function whose minimum solves the given task while
remaining differentiable across all possible neural network
outputs.

3 Figure of merit

As highlighted in Section 1, one of the main challenges when
performing a precision test of the SM, or in the search for
NP, is the fact that some background processes may mimic
the signal and therefore contaminate the results. In the search



3

for a new particle, for example, one is often performing a
counting experiment which is described by the Poisson dis-
tribution. As discussed in [3], the number of events n in a
counting experiment in the case of a background (B) only
hypothesis (HB), and in the case of a signal (S) in the pres-
ence of the same background (HS+B) follows the Poisson
distributions

p(n | HB) =
Bne−B

n!
(5)

and

p(n | HS+B) =
(S+B)ne−(S+B)

n!
. (6)

When MC simulations for both the signal and the back-
ground are available, it is possible to identify quantities or
features in the data to separate and classify them correctly by
applying some specific selection criteria. This would even-
tually enable one to choose between the (null) background
only and the signal plus background hypotheses. In gen-
eral, however, applying some selection criteria to reduce the
background contamination will also remove some of the sig-
nal. It is, therefore, fundamental to define some additional
criteria that would indicate the best balance between reduc-
ing the background without compromising the signal. This
is done via the implementation of a figure-of-merit. One can
define S(t) and B(t) as the number of signal and background
events that pass some selection criteria (e.g. particles having
a momentum or energy larger than a specified threshold t).
In that case, standard FOMs used in particle physics are:

FOM =
S(t)√
B(t)

and (7)

FOM =
S(t)√

S(t)+B(t)
. (8)

Neither of the above is usable in the search for new parti-
cles since the number of expected signal events depends on
the cross-section of the process, and this is not known a pri-
ori. An alternative FOM for this specific case was proposed
in [3], often referred to as the Punzi FOM after the author,
and is now in widespread use. The Punzi FOM to maximize
is the inverse of the minimal detectable cross-section σmin,
defined as [3]

σmin(t) =
b2

2 +a
√

B(t)+ b
2

√
b2 +4a

√
B(t)+4B(t)

ε(t) ·L
, (9)

where a and b are the number of sigmas corresponding
to one-sided Gaussian tests at some predefined significance
level (α and β ), L is the target luminosity, ε(t) is the signal
efficiency and B(t) is the number of background events after
the selection defined by t [3].

4 Punzi-loss

We propose here a quantity approximating the Punzi FOM,
appropriate for optimising neural networks for physics se-
lections.

This loss function is based on the equation for the Punzi
sensitivity region (Eq. 9). However, Eq. 9 can not be used
directly because the number of background events B and
the signal efficiency ε are discrete functions of the network
parameters for any given fixed cut on the classifier output,
whereas the loss function must be differentiable. We can
build a differentiable function by replacing the fixed cut on
the output with a sum over all events, weighted with the re-
spective value of the output. If events classified as signal
cluster around an output of 1 and events classified as back-
ground at 0, this quantity will closely approximate the orig-
inal function. In Eq. 9 this weighting can be captured by
performing the replacements

ε(t)→ ε(www,bbb) = ∑
xxx

yi · ŷi(www,bbb) · ssig

Ngen
and (10)

B(t)→ B(www,bbb) = ∑
xxx
(1− yi) · ŷi(www,bbb) · s i

bkg, (11)

where the sum is over all training inputs xxx and the index i
denotes the ith training event. The collection of weights and
biases that constitute the free parameters of the network are
denoted as www and bbb. Ngen is the total number of generated
signal events, ssig is a scale factor for the signal and s i

bkg is a
scale factor for the background, which can include a weight
factor to scale the luminosity for the individual simulated
background samples to the target luminosity. The scale fac-
tors can also include correction factors such as trigger effi-
ciencies and should account for the sample size when only
a subset of the generated data is used to compute the loss.
A similar approach of building a differentiable metric based
on a FOM was taken by Elwood and Krücker [7], with a loss
function based on the discovery significance.

The Punzi-loss function is given by the arithmetic mean
of this continuous Punzi sensitivity calculated for all signal
hypotheses (mZ’) that are used in training,

CPunzi =
1

NZ’
∑
mZ’

σmin(www,bbb), (12)

with NZ’ being the total number of hypotheses that were con-
sidered. Note that this loss function can no longer be calcu-
lated using single training events but is instead based on a
set of training data.

To test the Punzi-loss function, we implemented a sim-
ple fully-connected network in PyTorch [8] with four input
neurons, one output neuron, and two hidden layers with 8



4

and 4 neurons, respectively. The size of the net was deter-
mined empirically to give good results while keeping the
network relatively small.1

5 Training strategy

For the Punzi-loss training to converge, we found that the
parameters of the network should already be initialised in a
way that defines some separation between signal and back-
ground (similar to the loss scheduling scheme described in
[9]). This can be achieved by pretraining the network using a
conventional loss function and subsequently fine-tuning this
through the use of the Punzi-loss function.

For the activation function of the neurons in the hidden
layers, a hyperbolic tangent is used while the output neu-
ron uses a sigmoid function. Before training, the input vari-
ables were scaled to lie between 0 and 1, and the network
parameters were randomly initialised. For the pretraining,
a weighted binary cross-entropy (BCE) loss function was
used. A weighting was attributed to the signal events such
that their weighted sum was equal to the weighted sum of
all background events. An outline of the network architec-
ture is given in Figure 1.

BCE

Punzi

1

2

Punzi optimised signal
region

Initial optimisation

Fig. 1 An outline of the network architecture. The first training with
the BCE loss function was used to set the weights and biases of the
net for the second training with the custom loss function based on the
Punzi figure of merit.

Initially, using the BCE loss function, the network was
trained with a batch size of 2048 and a learning rate (LR)
of 1. When the loss did not decrease for 10 epochs, the LR
was reduced by a factor of 0.5. The pretraining was stopped
after 200 epochs. This network is then once again trained
using the Punzi-loss function for which a learning rate of
0.0005 was used, and again this was reduced upon plateau-
ing. This training was stopped after 2000 epochs. For both
of these trainings, the stochastic gradient descent algorithm
was used for optimisation. All hyperparameters were op-
timised to give the best results for the respective training

1The network size and architecture is not relevant for our approach.

methods. One particularly important hyperparameter is the
batch size, the variation of which presents some unique as-
pects of the Punzi-loss function that must be considered.

Due to the nature of the Punzi-loss function concerning
the optimisation for a desired luminosity, utilising batches
requires the addition of weightings in the loss calculation.
The background data used for training contained 1000 fb−1

worth of events; however, in this study, we wish to optimise
the classifier for just 50 fb−1 of real-world data. Naturally, it
is preferred that all background data is utilised, and thus we
introduce a background scaling factor of 0.05. Additionally,
dividing the training data into batches brings about the addi-
tional requirement of multiplying both ε(www,bbb) and B(www,bbb)
by the number of batches used.

0 100 200 300 400 500
Epoch

300

400

500

600

700

800

Pu
nz

i-l
os

s
Nsamples : 200000
Nsamples : 50000
Nsamples : 25000
No Batching
Test
Train

Fig. 2 Evolution of Punzi-loss during training with batch sizes of
2×105, 5×104 and 2.5×104 and without batching.

Fig. 2 shows the evolution of loss during training with
batch sizes of 2×105, 5×104 and 2.5×104, and also no
batching (where the whole data set is passed as a single
batch). The validation results for each of these all settle at
similar values around 300 to 350. Batches of 50000 appear
to provide the best final loss value. While a batch size of
200000 does reach the same value, it does so in a greater
number of epochs and thus, due to its shorter training time,
a batch size of 50000, along with the unbatched model, is
used in the following experiment.

We note that small batch sizes bring a degree of insta-
bility to the loss. We found that batches smaller than those
shown in Fig. 2 led to increasing loss values over the train-
ing. This can be understood as a result of the limited number
of signal events present in any given batch of a small size,
leading to large statistical fluctuations in the calculated loss
values. This lower limit is, of course, study dependent.

6 Results

In this section, we present the results of utilising a Punzi-net
in a search for e+e− → µ+µ−Z’ signals amongst various
common backgrounds found in e+e− collider experiments.
At the Belle II experiment, this search was performed with



5

the commissioning data for the specific case of invisible de-
cays of the Z’ boson [10], a final state in which only the
two muons produced by the electron-positron annihilation
can be reconstructed. All information about the production
and decay of the Z’ boson is therefore to be inferred by
the two-muon system. The signal events are generated with
MadGraph 5 [11] for a range of candidate Z’ masses, span-
ning 0.1 GeV/c2 to 8.7 GeV/c2 in steps of 0.1 GeV/c2 with
20000 events produced at each. Additionally, MC samples
for the background process e+e− → e+e−µ+µ−, e+e− →
τ+τ− and e+e− → µ+µ−(γ) corresponding to 1000 fb−1

were used, since these can mimic the signal. The simula-
tion and reconstruction of the events was done using GEANT4
[12] and the Belle II Analysis Software Framework [13].
The analysis is conducted via the search for a peak in the dis-
tribution of the squared mass recoiling against the two-muon
system. An excess of entries beyond that of the expected
background at a given mass would indicate the presence of
such a Z’ particle of that mass. This distribution is divided in
(potentially overlapping) bins with bin widths correspond-
ing to ±2σ of the fitted Z’ signal distributions.

During both the initial BCE and subsequent Punzi-loss
training, only every second generated Z’ mass was used. For
the calculation of σmin in Eq. 12 only signal and background
events that lie within the respective ±2σ mass windows are
considered, using only signal events that were generated for
the corresponding mass. Thus, events that are not contained
in any of the mass windows of the used signal samples are
not taken for the training. This results in a data set of approx-
imately 3.25 million total events, of which ∼10% are sig-
nal and the rest background. This is then split 80%/20% for
training/validation. The unused signal hypotheses are utilised
for validation and to check the trained networks ability to
generalise to signals unseen in training. The network was
trained with four carefully selected features related to the
event kinematics that showed a good discrimination power
when using a boosted decision tree classifier. These features
are described in Tab. 1. A more detailed description of these
features and the analysis can be found in [14].

The resultant maximum achievable Punzi figure of merit
and corresponding sensitivity spanning the range of gen-
erated Z’ signals are shown in Figs. 3 and 4, respectively.
Included in each of these figures are the Punzi trained net-
works, both without batching and with a batch size of 50000,
along with the BCE pretrained network. These values are
calculated using the background data contained within the
±2σ bin around each generated mass point. The maximum
achievable Punzi FOM and subsequent sensitivity values in
each bin are found using the cut to the network output that
provides the highest FOM for that respective bin. The plots
show the average result found over 25 independently trained
networks, along with the associated standard error. This serves
to demonstrate that not only can the Punzi-loss function pro-

variable description

p∗t,thrust(µ)
The transverse momentum component
of the muons with respect to
the thrust axis in the CMS.

p∗t,µmin
(µmax)

The transverse momentum component of the
higher energetic muon with respect to
the lower energetic muon in the CMS.

p∗l,µmin
(µmax)

The longitudinal momentum component of the
higher energetic muon with respect to the lower
energetic muon in the CMS.

p∗t (µ
+µ−)

The transverse momentum of the dimuon system
in the CMS.

Table 1 The most important features found after training BDTs with
many variables. These features are used for training the ANN.

duce better FOMs, but can do so consistently. In contrast,
BCE trained networks appear to achieve varying results after
their respective training, as indicated by the greater spread
in the standard error.

The Punzi-loss function shows greater effectiveness
through the lower half of the recoil mass spectrum, provid-
ing clear improvements to the FOM below approximately
4 GeV/c2. Furthermore, we note that introducing batching
not only speeds up the training but also greatly improves
the results; while the unbatched training appears to improve
the FOM in the lower masses at the cost of decreasing in
the higher masses, the batched training makes the same im-
provements while maintaining performance similar to that
of the BCE trained networks at higher masses. This may be
a result of the batching introducing stability to the training
and reducing sensitivity to initial hyperparameters due to the
additional stochastic component in the training.

0 1 2 3 4 5 6 7 8 9
Mgen [GeV/c2]

0.000

0.002

0.004

0.006

0.008

0.010

Pu
nz

i F
OM

Batched Punzi-net
Punzi-net
BCE Trained Network

Fig. 3 The average maximum Punzi FOM achievable in each bin
across range of generated Z’ signals, with standard error spread taken
from 25 independently trained networks. Triangles indicates those
masses which were left out of training while circles indicates those
used.

The generated Z’ masses used for training of the net-
work are shown with circles, and those not used in training
are shown with triangles. The figures show little to no dif-
ference in the network’s ability between these training and



6

0 1 2 3 4 5 6 7 8 9
Mgen [GeV/c2]

100

101

Pu
nz

i S
en

sit
iv

ity
 [f

b]

Batched Punzi-net
unBatched Punzi-net
BCE Trained Network

Fig. 4 The average maximum sensitivity achievable in each bin across
range of generated Z’ signals, with standard error spread taken from 25
independently trained networks. Triangles indicate the masses which
were left out of training while circles indicate those used.

validation masses, indicating that the model generalises well
to unseen signals. In the region between approximately 4.5
GeV/c2 and 5.5 GeV/c2 some dependence on whether or
not a mass was used in training does appear, this could be
combated by generating a larger set of Z’ signals covering
more mass points in that region.

Fig. 5 shows the output of the Punzi-trained network for
all signal events and Fig. 6 shows the same for all back-
ground events. Here the variable on the x-axis shows the
NN output before applying the last sigmoid activation func-
tion to better resolve the distribution of events. The clas-
sified signal and background events are separated into two
clusters, corresponding to an output of 0 and 1. The over-
laid line shows the cut value that would give the maximum
achievable FOM for each Z’ mass. The line separates the
two clusters, showing that the training using the approxima-
tions in Eq. 10 and 11 worked as expected.

The events are separated so that when only the signal
classified events are selected (for example, by applying a cut
at a NN output of 0.5), this gives the optimal Punzi FOM for
the whole mass range. This is a big advantage for an anal-
ysis since no additional interpolation between output val-
ues is required which can introduce discontinuities in the
final recoil mass distribution. Additionally, since the selec-
tion generalises to all signal hypotheses, it gives also the best
possible FOM for a signal in-between trained masses, which
would otherwise have non-optimal results.

The values of the Punzi FOM obtained with the same cut
on the network output applied to all mass values is shown in
Fig. 7, together with the maximum achievable Punzi FOM
values for the BCE-trained network. We note that, for the
Punzi-net, applying a single cut to the output maintains per-
formance very close to that of the maximum achievable in
any given bin. This means that even when compared to an
optimal varied cut applied to the BCE network output, in-
terpolated across the recoil mass spectrum, the Punzi-nets

10 5 0 5 10
classification variable

0

1

2

3

4

5

6

7

8

M
re

c [
Ge

V/
c2 ]

signal events

100

101

102

103

Fig. 5 The output distribution of all signal events using the Punzi-loss
trained NN, overlaid with the cut value that would give the best Punzi
FOM for each signal hypothesis. The classification variable shows the
NN output before applying the last sigmoid function in order to better
see the separation. The optimal cut value can be replaced by a uniform
cut without any significant difference in the resulting selection.

10 5 0 5 10
classification variable

0

1

2

3

4

5

6

7

8

M
re

c [
Ge

V/
c2 ]

background events

100

101

102

103

104

105

Fig. 6 The output distribution of all background events using the
Punzi-net, overlaid with the cut value that would give the best Punzi
FOM for each signal hypothesis.

show strong performance. As discussed previously, this cut
interpolation can lead to discontinuities in the final recoil
mass distribution, and so the ability to achieve compara-
ble results with a single cut to the Punzi-net output is much
preferable.

An understanding of why the model successfully gener-
alises, and one network can be utilised for the full squared
recoil mass spectrum, can be inferred from Fig. 8, which
shows a 3D scatter plot of the p∗t,thrust(µ), p∗t,µmin

(µmax) and
p∗l,µmin

(µmax) variables (after being normalised to values be-
tween 0 and 1) for three of the mass bins at a region of
p∗t (µ

+µ−) = (2.2±0.5) GeV/c. The green plane is the cho-
sen signal/background classification boundary obtained with
a single cut. One can see the masses describing three respec-
tive planes in the parameter space which occupy distinct re-
gions. This partitioning allows the network to adapt between



7

0 1 2 3 4 5 6 7 8 9
Mgen [GeV/c2]

0.000

0.002

0.004

0.006

0.008

0.010

Pu
nz

i F
OM

Punzi-net
Batched Punzi-net
BCE Trained Network

Fig. 7 The average FOM achieved with the best single cut applied
to the Punzi-net and average maximum Punzi FOM achievable with
the optimal varying cut to the BCE trained network in each bin across
range of generated Z’ signals.

the different mass regions and so negates any need for mul-
tiple classifiers for different regions.

Fig. 8 A 3D scatter plot showing the input space of the ANN with
p∗t (µ

+µ−) fixed around 2.2 GeV/c. The separation boundary defined
by the final selection (green sheet) separates the planes corresponding
to different recoil masses in a way that optimises the selection for all
signal hypotheses.

7 Conclusions

We have demonstrated that it is possible to implement a
non-differentiable metric approximation and a correspond-
ing loss-scheduling, combining both the approach of particle
physics and that of machine learning. We have provided de-
tails on how this can be done, along with a publicly available
code implementation in PyTorch [15]. We designed a new

loss function directly related to a precise figure of merit and
implemented it in the training of a neural network. We called
the new loss function associated with the loss-scheduling a
Punzi-loss function and the neural network implementing it
a Punzi-net. Our proposed method applied to the search of
new particles of unknown mass in high energy physics ex-
periments achieves better performance than standard meth-
ods and simplifies the subsequent analysis since a common
selection for all signal hypotheses can be applied on the clas-
sifier output. Our results are general and represent a fur-
ther step towards a fully differentiable analysis framework
in which the optimisation of the signal selection will also
account for the size of systematic effects.

Acknowledgements The authors would like to thank the Belle II Col-
laboration and Belle II software group for useful discussions and sug-
gestions on how to improve this work. P. Feichtinger, H. Haigh and G.
Inguglia would like to acknowledge funding received under the Hori-
zon 2020 framework of the European Research Council, ERC StG Nr.
947006 InterLeptons, and under the FWF standalone framework with
grant Nr. P31361 Searches for dark matter and dark forces at Belle II.
James Kahn’s work is supported by the Helmholtz Association Initia-
tive and Networking Fund under the Helmholtz AI platform grant.

References

1. T. Keck, FastBDT: A Speed-Optimized Multivariate Classification
Algorithm for the Belle II Experiment, Comput. Softw. Big Sci. 1
(2017) no.1, 2 doi:10.1007/s41781-017-0002-8

2. K. Albertsson et al., Machine Learning in High Energy Physics
Community White Paper, arXiv: 1807.02876, 2019.

3. G. Punzi, Statistical problems in particle physics, astrophysics and
cosmology. Proceedings, Conference, PHYSTAT 2003, Stanford,
USA, September 8-11, eConf C030908, ArXiv: physics/0308063,
2003.

4. Abe, T., Belle II Technical Design Report, Belle II Collaboration,
KEK-REPORT-2010-1, arXiv:1011.0352, 2010.

5. E. Kou et al., The Belle II Physics Book, Progress of Theoretical
and Experimental Physics 12, 2050-3911, 2019.

6. T. Abe et al., Accelerator design at SuperKEKB, Progress
of Theoretical and Experimental Physics 3 03, 2050-3911,
10.193/ptep/pts083, 2013.

7. Adam Elwood and Dirk Krücker, Direct optimisation of the dis-
covery significance when training neural networks to search for new
physics in particle colliders, arXiv:1806.00322, 2018.

8. A. Paszke et al., An Imperative Style, High-Performance Deep
Learning Library, Advances in Neural Information Processing Sys-
tems 32, 8024–8035, 2019.

9. O. Taubert et al., Loss Scheduling for Class-Imbalanced Image Seg-
mentation Problems, 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA)

10. I. Adachi et al., Belle II Collaboration, Search for an Invisibly De-
caying Z

′
Boson at Belle II in e+e−→ µ+µ−(e±µ∓) Plus Missing

Energy Final States, Phys. Rev. Lett. 124 14, 141801, 2020.
11. J. Alwall et al., The automated computation of tree-level and next-

to-leading order differential cross sections, and their matching to par-
ton shower simulations, JHEP 07, 079, 2014.

12. Agostinelli et al., GEANT4–a simulation toolkit, Nucl. Instrum.
Meth. A 506, 250–303, 2003.

13. T. Kuhr, The Belle II Core Software, Comput. Softw. Big Sci. 3
(2018) no.1, 1 doi:10.1007/s41781-018-0017-9



8

14. P. Feichtinger, Search for an invisibly decaying Z′ boson and study
of particle identification at the Belle II experiment, Master’s Thesis,
TU Wien, 2021 doi:10.34726/hss.2021.84843

15. Public Punzi-loss implementation, github.com/feichtip/punzinet


	Introduction
	Neural networks
	Figure of merit
	Punzi-loss
	Training strategy
	Results
	Conclusions

