

Employing Deep Learning to Find Slow

Pions in the Pixel Detector in the Belle II

Experiment

Verwendung von Deep Learning um langsame Pionen im Pixel Detektor des

Belle II Experiments zu finden

Master Thesis

by
Johannes Bilk

submitted at
PD Dr. Sören Lange AR

and
Prof. Dr. Claudia Höhne

II. Physics Institute
Faculty 07

Justus-Liebig-Universität Gießen

2

3

Abstract (English)

In the context of this thesis it was investigated whether the classification of Slow Pions

at the pixel-detector of the Belle II experiment is feasible with methods of artificial

intelligence. These Slow Pions experience a large energy loss in the pixel-detector and

therefore do not reach the outer detector layers, consequently no charged tracks are

available. In this thesis we try to identify these Slow Pions only on the basis of pattern

recognition of pixel structures. 78% of all slow pions are found against a large

background of other particles. The number of mislabels is 22%.

Abstract (Deutsch)

Im Rahmen dieser Thesis wurde untersucht ob mit Methoden der künstlichen

Intelligenz die Klassifizierung von langsamen Pionen am Pixel-Detektor des Belle II

Experiments durchführbar ist. Diese langsamen Pionen erfahren im Pixel-Detektor

einen großen Energieverlust und erreichen daher nicht die äußeren Detektoren,

folglich stehen dann keine geladenen spuren zur Verfügung. Im Rahmen dieser Thesis

wird daher versucht die Identifikation dieser langsamen Pionen nur auf Basis von

Mustererkennung von Pixelstrukturen durchzuführen. Es werden 78% aller

langsamen Pionen gegen einen großen Hintergrund anderer Teilchen gefunden. Der

Anteil an Mislabels liegt bei 22%.

4

Statement of Authorship

I hereby declare that I am the sole author of this master thesis and that I have not used

any sources other than those listed in the bibliography and identified as references. I

further declare that I have not submitted this thesis at any other institution in order to

obtain a degree.

________________________ ________________________

(Place, Date) (Signature)

5

6

Dedication

This is to those who preceded me in my efforts, because without them I would have

failed in every regard and to Alfred Wegner1, who stood up for his scientific findings

against the consensus of the wider scientific community.

A dwarf standing on the shoulders of a giant

may see farther than a giant himself.

This is to my family bound to me by blood, friendship and love.

I don’t know half of you half as well as I should

like; and I like less than half of you half as well

as you deserve.

1 Alfred Lothar Wegener (1 November 1880 – November 1930)

7

8

Table of Contents

1 Introduction ... 12

2 B-Physics at Belle II ... 14

2.1 SuperKEKB Facility .. 14

2.2 Belle II & Its Subdetectors ... 16

2.2.1 The Subdetectors .. 16

2.2.2 PXD – Pixel detector... 19

2.3 B-Physics at Belle II .. 20

2.3.1 Reconstructing B mesons ... 23

2.3.2 Slow Pions .. 24

2.3.3 Tagging of B mesons .. 26

2.4 Simulated data .. 26

3 The Mathematics Section .. 30

3.1 Gentle Introduction to Linear Algebra .. 30

3.2 What’s so important about derivatives? .. 34

4 Artificial Intelligence .. 38

4.1 About Machine Learning ... 38

4.1.1 Deep Learning ... 39

4.1.2 Historical Overview ... 39

4.1.3 Supervised Learning ... 40

4.1.4 Unsupervised Learning .. 40

4.1.5 Self-Supervised Learning ... 41

4.1.6 Reinforced Learning ... 41

4.1.7 Inverse Reinforcement Learning ... 41

4.2 About Artificial Neuronal Networks .. 42

4.2.1 Overfitting & Underfitting ... 42

4.2.2 The Black Box Problem ... 43

4.2.3 The Alignement Problem ... 43

9

4.3 The Ingredients of a Neural Network ... 43

4.3.1 Activation Functions ... 44

4.3.2 Loss Function .. 45

4.3.3 Optimizer & Gradient Descent .. 46

4.3.4 What is an artificial neuron? .. 50

4.3.5 Linear layer ... 50

4.3.6 Convolutional layer ... 52

4.3.7 Transposed Convolutional Layer ... 55

4.3.8 Other Layer Types.. 56

4.3.9 The Basic Working Principle of a Neural Network ... 56

4.3.10 A List of Hyperparameters ... 58

4.4 Python and PyTorch ... 60

5 Statistics ... 62

6 Theoretical Background ... 66

6.1 The Standard Model ... 66

6.1.1 What is Gauge Theory ... 70

6.1.2 Left- and Right-Handedness .. 70

6.1.3 CPT Theorem ... 71

6.1.4 Weak Force .. 72

6.2 CP Violation... 73

6.2.1 Some History ... 73

6.2.2 A general approach to CP violation ... 74

6.2.3 Three classes of CP violation ... 74

6.3 CKM and Triangles ... 77

6.3.1 CKM Matrix .. 77

6.3.2 The Unitary Triangle ... 79

7 Analysis .. 82

7.1 Methodology ... 82

7.2 Process ... 83

7.2.1 Finding an Optimizer .. 83

10

7.2.2 Adjusting Learning Rate ... 87

7.2.3 Regularization through Drop Rates .. 88

7.2.4 Testing for Batch Size .. 90

7.2.5 Convolutional Layer – Finding Kernel Size... 92

7.2.6 Convolutional Layer – Finding a Channel Width .. 94

7.2.7 Convolutional Layer – How many Convolutions? ... 97

7.2.8 Transposed Convolutional Layer ... 100

7.2.9 Learning Rate Schedulers .. 103

7.2.10 Activation Functions .. 106

7.3 Results ... 109

7.3.1 Long-Term Tests ... 110

7.3.2 Tests against Single Particles .. 117

7.3.3 Multiclass Tests ... 121

7.3.4 Tests against Larger Combinations ... 128

7.3.5 The runs against Slow Electrons .. 132

7.3.6 No Single Pixel Runs .. 134

7.3.7 One Last Test Run .. 137

8 Summary & Concusions .. 140

8.1 What did we achieve? .. 140

8.2 What needs to be done? ... 142

9 Bibliography... 144

A. Additional Graphs... 153

Event Coordinate Distributions ... 153

Additional Plots for Long-Term Test Runs .. 157

Confusion Matrices for all Runs ... 162

B. The Code Base... 191

The Main Code ... 191

And the helper code .. 200

The preprocessing Code .. 212

11

C. Code Explanation .. 215

12

1 Introduction

Nothing surprises me; I’m a scientist.

Dr. Henry Walton Jones Jr.

The Standard Model (SM) is the current gold standard in particle physics, containing

the electromagnetic, weak and strong forces and describing the interaction of all

elementary particles. Still, it does not give us a complete picture of nature (1). For

instance, it does not contain gravity, the weakest of the four fundamental forces,

governing the cosmos. General Relativity, the theory describing gravity, was put in a

mathematical framework by people like Albert Einstein2 and Georges Lemaître3. The

latter corrected Einstein’s, self-admitted, biggest mistakes, which gave rise to the theory

of the so-called Big Bang4.

According to the SM matter and antimatter should have been created in equal amounts

during the Big Bang, meaning that matter and antimatter is always created and

annihilated in pairs. Manifestly the observable universe consists of 5% matter, 27%

dark matter and 68% dark energy. This leads to the questions, where did all the

antimatter go (1) (2) (3)?

One possible explanation for this discrepancy is an asymmetric decay of matter and

antimatter. This problem is related to conversation laws in physics and their violation,

namely flavor universality violation, the baryon asymmetry problem and charge-

parity (CP) violation. In order to understand these phenomena, we need to investigate

them and search for new physics (NP) beyond the SM.

The current frontier of NP is the heavy flavor sector of the SM, in particular B-physics

(4) (5) (6). B mesons occur in pairs (7), measuring life time asymmetries in B-decays will

give insights into the CP asymmetry (8) and the Higgs5 sector (9). Together, in a cordial

2 Albert Einstein (14 March 1879 - 18 April 1955)
3 Georges Henri Joseph Édouard Lemaître (17 July 1894 - 20 June 1966)
4 Fred Hoyle: “for it's an irrational process, and can't be described in scientific terms”
5 Peter Ware Higgs (29 May 1929)

13

rivalry, BaBar and Belle showed the existence of CP violation in B systems (10). B-

physics is currently researched at SLAC, SuperKEKB and LHCb.

There are numerus ways to study B-mesons and the one done here is through so called

charged Slow Pions, which exhibit a low transversal momentum. These Slow Pions

come from decays of charged excited D mesons called D* (11) (12), which come from

beauty-anti-beauty quark pairs. CP violation in this sector has been predicted to be

minuscule (>O(0.01)), CP violation above this level would lead to NP (13).

Having an effective algorithm to find Slow Pions in a large data set will enable us to

reconstruct B-decays more proficiently, thus it will give insights into NP beyond the SM.

It is not humanly possible to analyze all the data and to look at every data point to infer

the rules that created this very data point. We have no way of understanding and

deducing conclusions from the data at hand, since we do not have nor do we need to

have the ability to look at everything in its entirety. We let computers do the heavy

lifting, in not just looking at the data and sorting it, which is the traditional way of

analyzing data. We also rely on computers to figure out the rules distinguishing

between different kind of events. This approach of computers figuring out the rules

themselves is called Machine Learning (ML) and I employed this approach to find Slow

Pions in a large data set of different kinds of particles.

14

2 B-Physics at Belle II

If my calculations are correct, when this baby hits 88 miles per hour, you’re gonna see some

serious stuff.

Dr. Emmett Brown

The discovery of the positron 1932 by Anderson6 (14) (15) is considered the beginning

of particle physics. Anderson noticed tracks of the same curvature as of electrons in

photo emulsion, while tracking cosmic rays. But these track bend in the other direction.

The radius and direction of the tracks lead him to the conclusion that there must be

other elementary particles of the same weight as electrons, but with the opposite

charge.

2.1 SuperKEKB Facility

Figure 1: SuperKEKB Facility, consisting of a Positron- and Electron-ring, a damping ring and a linear

accelerator and the Belle II decetor system

Figure 1 shows a schematic layout of the SuperKEKB facility with every part labeled.

This section is based on Accelerator design at SuperKEKB (15), Report on SuperKEKB

phase 2 commissioning (16) and SuperKEKB Collider (17). SuperKEKB and its

6 Carl David Anderson (3 September 1905 – 11 January 1991)

15

predecessor are asymmetric electron-positron ring collider. The KEKB accelerator ran

from 1998 until 2010.

The ring is 3 km long, the beam crossing angle is 83mrad in order to keep the beams

separated. The blue ring in Figure 1 is the electron ring and has an energy of 7 GeV with

a current of 2.6 A. It is also called high energy ring (HER). The Positron ring has an

energy of 4 GeV, red in the figure, it has a beam current of 3.6 A. It is called low energy

ring (LER). Thus, the center of mass energy is at the Υ(4𝑆) resonance at 10.58 GeV. The

Υ are a series of resonances for electron-positron annihilation, it is shown in Figure 2.

The difference in energies creates a Lorentz7 boost of 𝛽𝛾 = 0.28 , which allows the

measurement of decay vertices, precise lifetimes and mixing parameters giving insight

into CP violation. Furthermore, there is a linear accelerator (linac) and a damping ring

(DR) for the positrons. The boost factor is just two thirds that of KEKB, but the beam

pipe of SuperKEKB has a radius of 10 mm around the collision point. This is just two

thirds of the beam pipe radius of KEKB. Addtionally, the first two layers of the detector

are closer to the beam. These two facts compensate for the smaller boost.

Figure 2: Cross section for electron-positron annihilation (19)

The goal of the upgrade is a luminosity of 8 × 1035𝑐𝑚−2𝑠−1, which is forty times the peak

luminosity of KEKB. The higher luminosity leads to twenty times larger backgrounds,

7 Hendrik Lorentz (18 July 1853 – 4 February 1928)

16

which makes data analysis harder. Luminosity describes the ratio of frequency of

detected events to cross-section.

The increased luminosity will be attained by the nano-beam scheme, as was proposed

by Raimondi, a depiction is shown in Figure 3. This means the beam emittance is

decreased and the current is slightly raised, while having a large crossing angle 𝜗 at the

collusion point.

Given the Lorentz 8 factors 𝛾± , the beam sizes 𝜎𝑥,𝑦∗ at the collision point, the beam

currents 𝐼±, a beam-beam tune shift 𝜉𝑦±∗ and two geometry correction factors 𝑅𝐿 and 𝑅𝜉𝑦

one can calculate the luminosity by:

𝐿 =
𝛾±
2𝑒𝑟𝑒

(1 +
𝜎𝑦
∗

𝜎𝑥
∗)(

𝐼±𝜉𝑦±

𝛽𝑦
∗)(

𝑅𝐿
𝑅𝜉𝑦
)

The + denotes positrons and – denotes electrons in the equation above. The vertical

beta function 𝛽𝑦∗ , describes the thickness of the beam. The bulk of increase in luminosity

will be achieved by minimizing this factor.

Figure 3: The Nano-Beam Scheme

2.2 Belle II & Its Subdetectors

2.2.1 The Subdetectors

This section is taken from the third chapter of The Belle II Physics Book (18) and from

Belle II Technical Design Report (19). The Belle II detector is a system of multiply

subdetectors. Figure 4 shows the Belle II detector system and how each part are situated

in the whole gestalt.

8 Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928)

2ϑ

d

17

Figure 4: Belle II with Subdetector Labels (18)

Now following the subdetectors from the inner most to the outer most, as seen in Figure

4, I will describe each very briefly.

PXD The pixel detector (PXD) is the inner most detector and it consists of two

layers of pixelated silicon sensors with 14 mm and 22mm radii around the

beam pipe. It has 10M readout channels.

SVD The silicon vertex detector (SVD) is made up of four layers of double-sided

silicon strips with 39 mm, 88 mm, 104 mm and 135 mm radii. It has 224k

readout channels and 1902 readout chips with a fast-shaping time of

𝒪(50𝑛𝑠). Apart from measuring B decay vertices, it looks at decay channels

containing D mesons and 𝜏 leptons.

CDC The central drift chamber (CDC) has three main tasks, it reconstructs the 3D

helix paths of charged particles and identifies them and uses this

information to issue data taking triggers for the other detectors. Its inner

radius is 160 mm and the outer radius is 1130 mm. It has 14k readout

channels for 14.336 sense wires, made of tungsten and 42,240 field wires,

made of aluminum. The chamber is filled with He-C2H6 gas.

TOP The time-of-propagation (TOP) detector consists of 16 quartz glass bars and

it has a time resolution of 100 ps. Each quartz bar is about 260 cm × 45 cm ×

2 cm big. It has 8k readout channels. Its purpose is to identify charged

18

particles and separate Kaons from Pions using Cherenkov9 radiation in the

barrel region, the part surrounding CDC.

ARICH The aerogel ring-imaging Cherenkov (ARICH) detector sits at the end of CDC

in direction of the electron beam. Like TOP it is used to identify charged

particles and to separate Kaons from Pions with an energy resolution of 0.4

GeV up to 4 GeV. This detector has 78k readout channels.

ECL The electromagnatic calorimeter (ECL) detects gamma rays and mainly

separates Electrons from Pions and other hadronic matter. It is made up of

8736 thallium doped cesium iodide crystals with a total weight of 43 tons.

ECL is 3 m long and has an inner radius of 1.25 m. It has 8.7k read out

channels. It measures the luminosity.

KLM The outer most detector identifies 𝐾𝐿𝑜𝑛𝑔 and Muons (KLM). It is made up of

alternating 14 iron plates and 15 active detector plats, each with a thickness

of 4.7 cm. In this manner it can precisely measure hadronic showers. It has

17k readout channels.

The trigger (TRG) and data acquisition (DAQ) system are of further importance,

especially in regards to the topic of this work. TRG needs to be efficient in order to fulfill

limitations imposed by technical constraints of the DAQ.

The trigger system is built up of several sub-triggers and a final-decision logic. If CDC

measures at least three tacks and ECL sees larger energy deposition, their sub-triggers

actuate, than the global decision logic makes a decision to issue a global trigger or not.

In this manner background events, which are characterized by two or less tracks in

CDC, will be suppressed. This system can actuate at a rate of 30 kHz.

Upon an issued trigger by this hardware trigger (L1-trigger), the DAQ takes in the data

and a software-based trigger system (HLT) will reduce the trigger rate down to 10 kHz

in order to store the data.

9 Pavel Alekseyevich Cherenkov (28 July 1904 – 6 January 1990)

19

2.2.2 PXD – Pixel detector

Figure 5: SVD and PXD Subdetectors (20)

This section is based on chapter three of The Belle II Physics Book (18), the fourth

chapter from Belle II Technical Design Report (19) and Online-analysis of hits in the Belle-

II pixeldetector for separation of slow pions from background (7). Figure 5 shows how

PXD is nested in SVD. The PXD is the closest to the beam and it is not included in the

trigger system, this is due to the large number of pixels.

The PXD consists of two depleted field effect transistors (DEPFET) silicon layers with a

thickness of 75 μm. The inner layers, called modules, have a size of 1.5×6.8 cm2 and the

outer ones have a size of 1.5×8.5 cm2, each pixel has a size of 0.0025 mm2. How the PXD

models are arranged is depicted in Figure 6. The modules themselves have very little

power draw and can be easily air cooled, but the readout electronics, will need to be

actively cooled.

The higher luminosity will lead to higher occupancy within the system. In order to deal

with this, the number of pixels needs to be high. Every module has a resolution of

256×768 pixels. The readout happens in a rolling shutter manner with 100 ns per pixel

row. The total readout time is 20 microseconds.

20

Figure 6: The PXD Modules (40)

The data generated by PXD can reach up to 28 Gbit/s overwhelming DAQ and the trigger

system. The data rate coming from PXD is 1 MByte/event it is needs to be reduced by a

factor of ten down to 100 kByte/event, this is in part a technical limitation of gigabit

ethernet. What happens is that HLT extrapolates from the other detectors to issue a

region of interest (ROI) for PXD.

2.3 B-Physics at Belle II

Красота спасёт мир

The Idiot

The b-quark was discovered 1977 at Fermilab by a group led by Leon Lederman10 (16)

(17). They were studying muon-anti-muon pairs. The group found the so called Υ

(Upsilon)11 resonance, which was made up of a new kind of quark-anti-quark pair. This

new quark was dubbed ‘beauty’ or ‘b-quark’. The Υ resonance was already mentioned

in an earlier section. It is shown in Figure 2.

The B meson was discovered 1983 at CLEO (25). CLEO was an electron-positron

accelerator operating at the Υ(4𝑆) resonance, the last peak in Figure 2. The research

10 Leon Max Lederman (15 July 1922 – 3 October 2018)
11 Internally they called it ‘Oops-Leon’

21

team was looking for simple decay modes with D mesons and one or two charged Pions.

They observed decays of B mesons, namely:

𝐵− → 𝐷0𝜋−

�̅�0 → 𝐷0𝜋+𝜋−

�̅�0 → 𝐷∗+𝜋−

𝐵− → 𝐷∗+𝜋−𝜋−

This section is based on the chapters two, seven, eight and seventeen of The physics of

the B factories (10) and chapters eight and nine of The Belle II Physics Book (18).

The Υ(4𝑆) resonance produces B meson pairs without fragmentation particles, creating

clean samples. The 𝐵0�̅�0 and 𝐵+𝐵− pairs are in the quantum state 1−−, thus the initial

state is well known, allowing analysis methods like missing mass. Which we can

calculate by this formular:

𝑀𝑚𝑖𝑠𝑠
2 = (𝐸Υ(4S) −∑𝐸𝑛

𝑁𝑡

𝑛=1

)

2

−∑|𝑝𝑛|
2

𝑁𝑡

𝑛=1

Belle II looks at different kinds of decays. Here follow a few example decays. Figure 7

shows a purely hadronic B decay.

Figure 7: Example Feynman diagrams for hadronic B decays (26)

Fully hadronic means, as can be seen in the figure, that all decay products are of

hadronic matter. Figure 8 shows a fully leptonic decay. In these decays we have only

leptons in the final states.

Figure 8: Example Feynman diagrams for leptonic B decays (10)

22

Figure 9 shows a semi-leptonic decay, which decay through first order weak interaction

and are governed by W bosons. These decays include hadrons and leptons in their final

states.

Figure 9: Example Feynman diagrams for semi-leptonic B decays (10)

Finding new physics (NP) in leptonic and semi-leptonic decays will be hard, since it is

heavily suppressed within the SM. Thus, is makes sense to look for these decays

involving tau leptons, which might give insights into process outside of the SM.

Figure 10 shows a Feynman diagram for BB oscillation. The boosted topology allows to

measure the oscillation frequency of neutral B mesons with d-quarks. But the

asymmetry is not enough for B mesons with s-quarks, which oscillate at higher

frequencies. These kinds of decays are of interest, because of an asymmetry in

oscillation.

Figure 10: BB oscillation at lowest order diagram (10)

Transitions of the kind 𝑏 → 𝑠 or 𝑏 → 𝑑 are called flavor changing neutral current

(FCNC). It can be seen in the figure above. These decays proceed through so called

penguin or box diagrams and currently only Belle II can measure these processes.

Table 1 shows the for this work relevant particles, it gives some of the important

characteristics.

23

Table 1: Tabulation of the for this work important particles

 Symbols Quarks Mass / MeV Isospin Parity Lifetime / s

Upsilon 4S
Υ(4𝑆) 𝑏�̅� 9460.30 0 1-

1.218×10-

20

Neutral B
𝐵0 �̅�0 𝑑�̅� �̅�𝑏 5279.61 ½ 0-

1.520×10-

12

Neutral D
𝐷0 �̅�0 𝑐�̅� 𝑐̅𝑢 1864.84 ½ 0-

4.101×10-

13

Excited D 𝐷∗+ 𝐷∗− 𝑐�̅� 𝑐̅𝑑 2010.27 ½ 1- 6.9×10-21

Pion 𝜋+ 𝜋− 𝑢�̅� �̅�𝑑 139.57 1- 1- 2.603×10-8

2.3.1 Reconstructing B mesons

This section is based on the eighth chapter of The Belle II Physics Book (18) and sevens

chapter of The physics of the B factories (10). In this section I want to give some example

decay chains for each of the aforementioned decays. Reconstruction happens through

summation of all momenta of all final decay products. Thus, it is only possible thanks

to momentum conversation. As was already mentioned Υ(4𝑆) predominately decays

into two B mesons. We can take from Table 1, that these B mesons will always have the

same mass. This means we need only to reconstruct one of the B mesons, since it makes

up half of the center of mass energy. Which in turn is measured through the momenta

of the final decay products.

An example of a fully hadronic B meson reconstruction can be:

𝐵0 → 𝐷∗−𝜋+

 ↪ �̅�0𝜋−

 ↪ 𝐾+𝜋−𝜋0

 ↪ 𝛾𝛾

In leptonic and semi-leptonic reconstruction additional constraints are necessary, since

they include neutrinos, which do not interact with the detector. An example decay is

the following:

𝐵0 → 𝐷∗−ℓ+𝜈

 ↪ �̅�0𝜋−

24

 ↪ 𝐾+𝜋−𝜋0

 ↪ 𝛾𝛾

One uses the missing mass method, since the initial state is known and the final states

are all measured. Given the signal B (𝐵𝑠𝑖𝑔) and a tag side B (𝐵𝑡𝑎𝑔) we can calculate the

missing mass:

𝑀𝑚𝑖𝑠𝑠
2 = (𝑝𝑒+𝑒− − 𝑝𝐵𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑝𝐵𝑡𝑎𝑔)

2

Under the assumption, that neutrinos are the only missing mass, one can exploit this

method. There is one further method of reconstruction called partial B meson

reconstruction, where not all final decay products need to be detected. This increases

the reconstruction efficiency manifold. Decays where partial reconstruction is possible

involve 𝐷∗ mesons.

2.3.2 Slow Pions

This section is based on the sixth and eighth chapter of The Belle II Physics Book (18),

chapter eight of The physics of the B factories (10) and Online-analysis of hits in the Belle-

II pixeldetector for separation of slow pions from background (7). Pions where

discovered 1947 by a group led by Cesar Lattes12 (29) (30).

Figure 11: Slow Pions coming decays of BB pairs vs. D*

12 Cesare Mansueto Giulio Lattes (11 July 1924 – 8 March 2005)

25

I mentioned earlier that some of the most important decays of B mesons include D

mesons, especially 𝐷∗. These are excited D mesons. It is critical to properly tag so called

Slow Pions, which is one of their decay products. Slow Pions can come from none 𝐷∗

decays, but they are regarded as background and thus I am not concerned about them.

Slow Pions 𝜋𝑠𝑙𝑜𝑤
± are characterized by a slow transverse momentum, see Figure 11.

They are created nearly at rest in the 𝐷∗ frame, thus they continue its direction together

with the 𝐷0. The decay chains I am looking at are:

𝐵0 → 𝐷∗−𝑋+

 ↪ �̅�0𝜋𝑠𝑙𝑜𝑤
−

�̅�0 → 𝐷∗+𝑋−

 ↪ 𝐷0𝜋𝑠𝑙𝑜𝑤
+

𝑋± can stand for any charged meson or a charged lepton and corresponding neutrino.

A 𝐷∗ that decays below 60 MeV mainly decays into a 𝐷0 and a 𝜋𝑠𝑙𝑜𝑤
± . This means that

most Slow Pions will not reach the outer layers. Figure 12 shows the first five layers of

SVD and PXD and how far Pions with different energies reach into the detector. We see

that most Pions get stuck in the lower layers. As was mentioned in the section about the

Belle II detector, if CDC has two or less tracks for charge particles it will not trigger. It

has been suggested to employ an artificial neural network as an online triggering

system for PXD in order to find Slow Pions.

Figure 12: Slow Pions in the first five layers of VXD

0 0.2 0.4 0.6 0.8 1-1 -0.2-0.4-0.6-0.8

80

70

60

50

40

30

20

10

cos(ϑ)

p
t
/
M

e
V

SVD Layer 3

SVD Layer 2

SVD Layer 1

PXD Layer 1

PXD Layer 2

26

It is possible that the 𝐷0 decays futher into a Kaon. In that case one can correlate both

mesons and improve the background suppression or rather the reconstruction of the

decay channel. Another possibility is 𝐵0 → 𝐷∗𝑊±. The W boson than hadronizes into a

fast Pion. The angle between the two Pions is large.

2.3.3 Tagging of B mesons

Here I want to make a simplified example of showing how to tag a B meson. Figure 13

shows a semi-leptonic decay of a 𝐵−(𝑏, �̅�) into a negative lepton, the corresponding anti-

neutrino and a placeholder 𝑋 meson consisting of �̅� and 𝑞 quark.

Figure 13: Semi-leptonic decay: 𝐵− → 𝑋ℓ−�̅�ℓ (10)

The �̅� quark stays the same, while the 𝑏 quark decays into a 𝑞 quark through radiating

a 𝑊− boson, which than decays into the leptons. We can detect the leptons and the 𝑋

meson and then infer the flavor of the original 𝐵 meson.

2.4 Simulated data

The data coming from the PXD are represented by 9×9 matrices, which can be

interpreted as small pictures, which are considerably smaller than the full PXD module

resolution. These are the ROIs that were mentioned earlier; their coordinates are

contained within every simulated event. Figure 14 shows the coordinate distribution

for all Slow Pions events. The distributions for all other categories can be found in

Appendix A. On the left of Figure 14 we see the norm, the two-layer structure of PXD

can be easily seen. In the middle we see relatively even distribution of all angles. On

the right we see the height distribution and can make out where the interaction point

is in relation to PXD.

27

Figure 14: Coordinate Distributions for PXD events of Slow Pions

In Figure 15 example events are shown for different particles and beam background.

The data analyzed in this work has been created using Monte-Carlo simulation.

Figure 15: PXD event data, the two left most columns are the most deviating events form the mean of each

set, the three columns in the middle deviate from the mean event somewhat and the two right most are the

least deviating from the mean event. Rows from the top: Anti-Deuterons, Pions, Protons, Slow Pions, box

generated Slow Pions, Beam Background, Electrons, Kaons, Gammas, Muons and Slow Electrons.

28

The number of events per data set are:

• Slow Pions (SP): 4.957.071 (1.757.348)

• Pions (PI): 911.318 (484.946)

• Anti-Deuterons (DD): 907.168 (365.706)

• Beam Background (BB): 633.283 (142.011)

• Protons (PP): 897.467 (437.956)

• Boxed Slow Pions (BP): 2.911.598 (724.666)

• Electrons (EL): 900.292 (516.605)

• Kaons (KK): 891.969 (516.987)

• Gammas (GA): 13.784 (5.990)

• Muons (MM): 896.921 (527.039)

• Slow Electrons (SL): 1.133.544 (627.185)

with the number of one-pixel events in brackets. This amounts to 15.044.415 simulated

events in total and 6.106.439 one-pixel event, where one-pixel events are events where

only one pixel of the 81 pixels per events has a non-zero value. Figure 16 shows the

total amount of data points per category and the amount of one-pixel events. It is quite

obvious, that nearly half of the all normal Pions are one-pixel events and that Slow

Pions make up one fifth of the entire data set, if we exclude Boxed Slow Pions. The data

set for gammas is about only 1.5% in size of the others, this is due to the fact that

gammas rarely interact with the pixel detector.

Figure 16: Number of events per data set in total and one-pixel events

an
t i
deu

te
ro

ns

pio
ns

pro
to

ns

sl
ow

pio
ns

boxed
pio

ns

bea
m

bac
kgro

und

el
ec

t r
ons

kao
ns

g
am

m
as

m
uons

sl
ow

el
ec

t r
ons

0

1

2

3

4

5

N
u

m
b

e
r

o
f

e
v
e

n
ts

1e6 Number of events per data set

total

one- pixel

29

I combined these data sets together into four bigger data sets, one combines everything,

except Slow Pions, Boxed Slow Pions and Slow Electrons, aptly called Everything (EV).

Then there is a data set called Heavy Background (HB), consisting of all the particles

made up of quarks, namely Pions, Anti-Deuterons, Protons and Kaons. The next one is

called Medium or Meson Background (MB), consisting of Kaons and Pions and the last

one is called Light or Lepton Background (LB). This last one is containing Electrons,

Muons and Gammas, which are not leptons.

30

3 The Mathematics Section

You keep using that word. I do not think it means what you think it means.

Inigo Montoya

3.1 Gentle Introduction to Linear Algebra

This section is based on the lecture notes by Max Horn for Grundlagen der Algebra by

Bernhard Mühlherr and on the book Mathematische Methoden in der Physik (24).

Definition 1 (Scalar):

A scalar is a single number. There are natural numbers, which start at zero and are

infinitely countable. We can define Integers by introducing the concept of negative

numbers. If we then take two integers and divide them by each other we get the rational

numbers. And finally, there are real numbers, they are important, because without

them there would be no Pi. I only mention this for completeness’s sake.

Definition 2 (Vector):

A vector is not a point in space, it is simply an element of a vector space. Vectors contain

directional information and obey certain rules about vector operations and scalar

multiplications and they are base depended.

In this work it is sufficient to understand a vector as a column:

�⃗� = (

𝑥1
⋮
𝑥𝑛
)

and its dual vector as a row:

�⃗� = (𝑦1 … 𝑦𝑛)

Definition 3 (Scalar Product):

Given a dual vector, we can define the scalar product, where a vector is mapped to a

scalar:

⟨�⃗�|�⃗�⟩ = ⟨(𝑦1 … 𝒚𝒏)| (

𝑥1
⋮
𝑥𝑛
)⟩ = �⃗� ⋅ �⃗� =∑𝑦𝑖𝑥𝑖

𝑛

𝑖=1

Scalar products are bilinear, meaning they are linear in both components.

Definition 4 (Norm):

31

Every scalar product induces also a norm, which just means if we have a scalar product,

getting a norm is an easy matter of transposing a vector and scalar producing it with

itself:

‖�⃗�‖ ≝ ⟨�⃗�𝑇|�⃗�⟩

A norm is understood to be a measure of length for a vector.

Definition 5 (Matrix):

The mathematical term here is a linear map, meaning there is a linear correspondence

between input and output. A matrix is an element of the so-called linear group. Since

we are only interested in concrete representations, a matrix is a quasi-table with n rows

and m columns, it takes the form:

𝑀 = (
𝑀11 ⋯ 𝑀1𝑛
⋮ ⋱ ⋮

𝑀𝑚1 ⋯ 𝑀𝑚𝑛

)

Special kinds of matrices are diagonal matrices:

𝑀𝑑𝑖𝑎𝑔 = (

𝑀11 0 … 0
0 𝑀22 …
⋮ ⋮ ⋱
0 𝑀𝑚𝑛

)

The identity matrix is a special diagonal matrix, with only ones:

𝐼𝑑 = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

A unitary matrix is a square matrix with a size of 𝑛 × 𝑛 and is defined by:

𝑈𝑇𝑈 = 𝐼𝑑

In the last equation we would first need to define matrix multiplication.

Definition 6 (Vector-Matrix Multiplication):

Here we define how a matrix and a vector can be combined and what the resulting

product is. A matrix stands on the left, a vector on the right. The length of the vector

must be equal to the number of columns of the matrix. The result will again be a

column vector. If the matrix stands right, then the vectors length must be equal to the

number of rows, then we will get a row vector.

An example will illustrate this:

32

𝑀�⃗� = (
𝑀11 ⋯ 𝑀1𝑛
⋮ ⋱ ⋮

𝑀𝑚1 ⋯ 𝑀𝑚𝑛

)(

𝑥1
⋮
𝑥𝑛
) =

(

∑ 𝑀1𝑖𝑥𝑖

𝑛

𝑖=1

⋮

∑ 𝑀𝑚𝑖𝑥𝑖
𝑛

𝑖=1)

Definition 7 (Eigenvalue):

The question is, can we simplify a matrix into a form where only the diagonal elements

are non-zero. The answer is, for special matrices we can do that under the condition

that all columns and rows are linear independent and that it is a square matrix,

meaning 𝑛 = 𝑚. The defining equation for an eigenvalue 𝜆 then is:

𝑀�⃗� = 𝜆�⃗�

Definition 8 (Condition Number):

This is a scalar given by the quotient of the smallest and largest eigenvalue:

𝜅(𝑀) =
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

if 𝜅 is close to one, it means the matrix is well conditioned, if it is a large number it

means the matrix is ill conditioned. For dynamic systems it means, that small changes

to the system result is large changes in the outcome.

Definition 9 (Matrix-Matrix Multiplication):

Given two matrices A and B of sizes 𝑟 × 𝑚 and 𝑚× 𝑛 and the resulting matrix C of size

𝑟 × 𝑛. Matrix vector multiplication is a special kind of matrix-matrix multiplication:

(

𝑎11 … 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑟1 … 𝑎𝑟𝑚

) ⋅ (
𝑏11 … 𝑏1𝑛
⋮ ⋱ ⋮
𝑏𝑚1 … 𝑏𝑚𝑛

) =

(

𝑐11 =∑ 𝑎1𝑖𝑏𝑖1

𝑚

𝑖=1
… 𝑐1𝑛 =∑ 𝑎1𝑖𝑏𝑖𝑛

𝑚

𝑖=1

⋮ ⋱ ⋮

𝑐𝑟1 =∑ 𝑎𝑟𝑖𝑏𝑖1
𝑚

𝑖=1
… 𝑐𝑟𝑛 =∑ 𝑎𝑟𝑖𝑏𝑖𝑛

𝑚

𝑖=1)

We notice that every element of the product is a scalar product of each row times

column of matrices A and B.

Definition 10 (Singular Value Decomposition):

33

Singular Value Decomposition can be done with any matrix, where a single matrix is

decomposed into three matrices:

𝑀 = 𝑈Σ𝑉𝑇

Where M is a 𝑚× 𝑛 matrix and Σ is a square diagonal matrix of size 𝑟 × 𝑟 ≤ 𝑚𝑖𝑛(𝑚, 𝑛).

U and V are unitary matrices of size 𝑚 × 𝑟 and 𝑛 × 𝑟 respectively.

Definition 11 (Matrix Inversion):

Matrix Inversion can only be done with square matrices where every column and row

are linear independent. Given a 𝑛 × 𝑛 matrix M, the inverse matrix 𝑀−1 is given by:

𝑀 ⋅ 𝑀−1 = 𝐼𝑑 = 𝑀−1𝑀

This gives us some understanding what a unitary matrix is, it is a matrix where the

transposed matrix is equal to its inverse.

Definition 12 (Tensor):

A tensor is a multi linear mapping. In this work it is enough to understand them as

multi-dimensional matrices with several indices13 , like 𝑇𝑖𝑗𝑘 or 𝑇𝑖𝑗𝑘 ; I just wanted to

make it clear, that more is a play, mathematically speaking. In Figure 17 is an

illustration of a tensor to given intuition what a tensor is, this is a special tensor called

full anti symmetric tensor.

Figure 17: Illustration of a tensor (25)

13 For some inexplicable reason physics love indices.

34

3.2 What’s so important about derivatives?

The dark side of the Force is a pathway to many abilities some consider to be unnatural.

Chancellor Palpatine

This section is based on the afformentioned book Mathematische Methoden in der

Physik and Mathematik für Physiker (26).

Definition 13 (Continues Function):

A continues function is colloquial speaking a function without gaps. The technical

definition is: a function f is called continuous, if and only if for every 𝜀 > 0 exits a 𝛿 > 0,

such that:

|𝑓(𝑥) − 𝑓(𝑎)| < 𝜀 ∀ 𝑥 ∈ 𝐼 𝑤𝑖𝑡ℎ |𝑥 − 𝑎| < 𝛿

Figure 18: A continues function

Definition 14 (Derivative):

A derivative is defined point wise. The derivative of 𝑓 in 𝑥0 is given by:

𝑓′(𝑥0) ≔ 𝑙𝑖𝑚
𝐼∋𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0

We call f’(x0) the derivative of f in x0, we write:

𝑓′(𝑥0) =
𝑑

𝑑𝑥
𝑓(𝑥0)

35

Figure 19: A differentiable function

Figure 18 shows a continues but not a differentiable function and Figure 19 shows a

differentiable and continues function. Left of 0 in Figure 18 the function can be

characterized as monotonously decreasing function and right of 0 it is a monotonously

increasing function.

What happens at the roots of derivatives? The black, solid function Figure 19 has

two curious points, at -1 and +1. These points coincide with the roots of the dashed, grey

curve in the figure. What happens here is that the dashed function is the derivative of

the solid curve, as was defined above and roots of derivatives mark out special points

on their respective function. These points are called extrema. Taking the derivative of

the derivative will further characterize these points. If this second derivative is

negative, meaning the first derivative is continuously decreasing, then the function has

a maximum. If the inverse is true, then the function has a minimum. If neither is true,

we speak of a saddle point.

What is the Chain Rule? Given two differentiable functions 𝑔: 𝐼 → 𝐽 and 𝑓: 𝐽 → 𝑅 with

𝑦0 = 𝑔(𝑥0), then the derivative of composite function is:

(𝑓 ∘ 𝑔)′(𝑥0) = 𝑓
′ (𝑦0)⏟
𝑔(𝑥𝑜)

 ⋅ 𝑔′(𝑥0)

we write:

𝑑

𝑑𝑥
𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥)) ⋅ 𝑔′(𝑥)

𝑔′(𝑥) is called the inner derivative and 𝑓′(𝑦0) is called the outer derivative.

36

Definition 15 (Partial Derivative):

Let f(x1, x2, …, xi, …, xn) be multivariable function, then we define that partial derivative

with respect to xi, i between 1 and n, as:

𝑓𝑥𝑖 (𝑥1, 𝑥2,… , 𝑥𝑖 , … , 𝑥𝑛) =
𝜕𝑓

𝜕𝑥𝑖

Definition 16 (Nabla):

Nabla is multi-dimensional differential operator, usually represented as a vector:

∇⃗⃗⃗≝

(

𝜕

𝜕𝑥1
⋮
𝜕

𝜕𝑥𝑛)

What is a gradient? Given a function f: ℝn → ℝ, the gradient of it is defined as:

𝛻𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =

(

𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2
⋮
𝜕𝑓

𝜕𝑥𝑛)

Definition 17 (Jacobi Matrix):

Given a function f: ℝn → ℝm, the Jacobi matrix of it is defined as:

𝐽𝑓 ≝

(

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1
⋮

⋱ ⋮

𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛)

37

Definition 18 (Hessian Matrix):

Given a function f: ℝn → ℝ, the Hessian matrix of it is defined as:

𝐻𝑓 ≝

(

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1
⋮

⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥𝑛
2)

Thanks to Schwarzes Theorem we only need to calculate the diagonal and either the

lower left or upper write half of the Hessian, since second derivatives are symmetric,

meaning:

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖

What is a Lagrangian14? The idea is to minimize the action or energy while moving

from a fixed starting point to a fixed end point. This is done infinitesimal variation on

a path between the two points until a minimum is found. The definition is given by:

𝑆[𝑥] = ∫ ℒ(𝑥(𝑡), �̇�(𝑡), 𝑡)𝑑𝑡

𝑡2

𝑡1

where ℒ(𝑥(𝑡), �̇�(𝑡), 𝑡) is the Lagrangian. The 𝑥(𝑡) which minimizes 𝑆[𝑥] is given by:

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝑥
= 0

The dot indicates a time derivative.

14 Giuseppe Luigi Lagrangia (25 January 1736 – 10 April 1813)

38

4 Artificial Intelligence

Þægiattv, vǫlva!

þik vil ek fregna,

vnz alkvnna,

vil ec ænn vita

Óðinn

4.1 About Machine Learning

Machine Learning (ML) is a general and broad term applied to all kinds of computer

analysis application in which computers learn the analysis parameters themselves.

Figure 20 is a depiction of how to think about ML, above we see the traditional

approach to computer analysis of data, below the ML approach. In the traditional

approach data and rules are used as input to get answers. In ML we try to extract the

rules, but only implicitly and not explicitly, since they are not of interest. (27) (28)

Figure 20: Illustration on machine learning (27)

Machine Learning has been employed in particle and high energy physics since the

1990s (29) (30). It has been applied as a real time, online trigging system and

successfully in offline reconstruction of data (31).

There are several subdivisions within Machine Learning. Canonically there are three

branches and sometimes a fourth one, namely supervised, unsupervised, reinforced

and self-supervised machine learning (28) (27) (32). Relative recently appeared also a

new variant called inverse reinforcement learning (33). I will summarize their

39

characteristics here based on these three books Deep learning with Python by Francois

Chollet, Deep Learning by Ian Goodfellow and grokking Deep Learning by Andrew W.

Trask.

4.1.1 Deep Learning

Figure 21: Nestedness of Machine Learning (27), (32), (28)

Deep Learning is the newest and current term for a specific kind of Artificial

Intelligence or Machine Learning systems. The descriptor deep is a reference to the

numerous amounts of parameters this kind of Machine Learning exibits. Figure 21

shows the relation between the different fields of computer implemented Artificial

Intelligence. Where Deep Learning is a special case of Artificial Intelligence and ML.

4.1.2 Historical Overview

Deep Learning, or as it was known during its early years Cybernetics, has its beginning

in the 1940s. Ever since then it waxed and waned in popularity over the decades (28).

It was inspired by biological neurons (34) and based on mathematical models to

describe how neurological systems learn (28). Machine Learning exists in its modern

form since the late 1970s and had a resurgence in recent decades, starting in the early

2000s (28) as computational power became strong enough.

The architecture of the first networks was similar to what we have nowadays, but the

weights of each neuron had to be adjusted by hand. It only functioned as a binary

categorizer. Just a decade later in the late 1950s the perceptron became the first self-

40

adjusting model. An integral part of Machine Learning known as stochastic gradient

decent was what made the weight adjustment of a model called adaptive linear element

(ADALINE) possible. (28)

The second wave of Deep Learning came about in the 1980s due to the advancements

in computational power. Its name then changed to connectionism or parallel distributed

processing. A key insight was to break up each problem into small parts, which together

can solve more complex problems. This trend lasted until predictions made by

researches about Machine Learning did not come true in the mid 1990s. (28)

Today neuroscience remains an inspiration for the development of artificial neural

networks and led to the development of convolutional neural networks for image

recognition (27).

4.1.3 Supervised Learning

This is probably the most common form of Machine Learning and its prime example

are artificial neural networks, such as the one I employ in this work. In supervised

learning we have a data set with labels or targets, the algorithm is running over this

prelabeled dataset trying to make a prediction. This prediction then is compared to the

target and based on how correct or wrong the machine performed, it adjusts the

parameters of the algorithm to make better predictions. This form of Machine Learning

is employed in written or spoken language recognition, language translation and image

classification.

4.1.4 Unsupervised Learning

The classic example of unsupervised learning is a self-organizing map. Here a

computer is not given any labels or targets, but instead is supposed to find the topology

of the input itself. Meaning the algorithm tries to find clusters or groupings based on

the features of a given data set. It is mainly employed in compression, reduction of

dimensionality or image denoising.

41

4.1.5 Self-Supervised Learning

This category is often subsumed by either supervised or unsupervised learning, since

it is very similar to both of them. Here a computer is given a data set without any labels,

but it generates the labels itself. It is a kind of supervised learning, but without human

intervention, still it retains the characteristics of supervised learning, such as making

a prediction based on past data. An example for self-supervised lerarning are

autodecoders.

4.1.6 Reinforced Learning

This is still a developing branch of Machine Learning. Here we put an agent in an arena

and set up rewards and punishments for certain actions. It is easier to understand with

an example where it is employed. Reinforced learning is used to train computers at

playing games, be it video games, Chess or Go and other board games. So far, its scope

of application is rather limited.

On a side note, I would like to mention the Frame Problem in this context. The easiest

description is, that it is not possible to write out in closed form all equations governing

the non-consequences of actions by an agent in an arena. Furthermore, the search

space of all possible interactions, for example threads to the agent, is combinatorial

explosive. Meaning an agent would have to check the probability of an infinitude of

possible problems at every step. This is closely related to the subject of relevance

realization. (35) (36)

4.1.7 Inverse Reinforcement Learning

Inverse reinforcement learning takes inspiration from how children learn. Instead of

directly instilling behavior, rules or rewards and punishments, machines are supposed

to observe humans and imitate their behavior. (33)

42

4.2 About Artificial Neuronal Networks

4.2.1 Overfitting & Underfitting

In ML it is important to solve a given problem sufficiently and not to optimize a network

too stringent on the data set in order not to lose its generality. Optimal in the sense of

performing an analysis on the training data set without making mistakes and general

in the sense of making the least number of mistakes on a test data set (27).

We can define this with understanding two terms central to evaluate a neural network.

Given the error on a training set, the error on the test set and the difference between

these error values, we can define underfitting as (28):

 not minimizing the error on the training set

and overfitting as (28):

 not minimizing the difference between training and test error.

Figure 22: Illustration of under- and overfitting (37)

The processes of under- and overfitting can be understood from Figure 22, on the left

we see underfitting in action, where we try to fit a sample with a linear function. On

the right we see overfitting in action, where every data point is hit relatively well, but

this fit will not be able to accommodate more data points, as they will fall far away

from the fit curve. In the middle we see an optimal fit, as the error is relatively low and

still new points will fall relatively close to the curve.

Overfitting happens when one trains on a too small data set, whereas underfitting

happens, when the the network is trained too short and/or on a too small data set (28)

(27).

43

4.2.2 The Black Box Problem

As already mentioned above, we only know the rules of analysis implicitly, if at all in

any capacity. Hence the black box problem refers to the fact, that we do not actually

know how a neural network solves a concrete problem. That does not mean that we do

not understand the principles at work, but the whole process of learning is happening

in a completely transparent manner. Put in another manner, we can understand every

step, but understanding the neural network taken together becomes impossible,

because of the number of parameters. (33)

4.2.3 The Alignement Problem

Und nun komm, du alter Besen!

Nimm die schlechten Lumpenhüllen;

Bist schon lange Knecht gewesen;

Nun erfülle meinen Willen!

Auf zwei Beinen stehe,

Oben sei ein Kopf,

Eile nun und gehe

mit dem Wassertopf!

The Sorcerer's Apprentice

As Machine Learning grows in power, complexity and applicability, one inherent

problem is becoming more and more apparent. We give a machine a set of problems,

or an arena to act in, and a set of instructions with rewards and punishments. These

machines start tackling the problems with our guidelines and after a while we will

discover, that despite the directives we have given it, the machine is not doing what we

wanted it to do. There occurs a mismatch between our proposed goals and the

consequences of the incentive structure we set up. This problem is called The Alignment

Problem and it has far reaching implications in many fields of Machine Learning. (33)

4.3 The Ingredients of a Neural Network

In this section it will become clear why I introduced some mathematical basics. We

needed the background information in order to understand the basics of artificial

44

neural networks. Most of this information here is based on the books Deep Learning

with Python by Francois Chollet (27), grokking Deep Learning by Andrew W. Trask (32),

Deep Learning by Ian Goodfellow, Yoshua Bengoi and Aaron Courville (28), The

hundred-page machine learning book by Andriy Burkov (37) and two MIT lectures by

Lex Fridman. Any supplementary sources will be mentioned explicitly.

4.3.1 Activation Functions

An activation function is at the end of each neuron and maps the value of the neuron

onto another real number. Activation functions have to be continuous, but not

differentiable and they have to be monotonic, but not strictly. These terms have been

discussed in The Mathematics Section.

The need for activation functions arises out of necessity to analyze data with non-linear

correlations. Each neuron in a linear layer is a simple linear mapping from input to

output and thus can only represent linear dependencies, this does not change with

adding more layers. An activation function introduces this needed non-linearity.

Figure 23 shows the activation functions, which I tested. The formulae are as following:

• LeakyReLU: 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = { 𝑥 𝑖𝑓 𝑥 ≥ 0
0.01 × 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• ReLU: 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)

• Sigmoid: 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+exp(−𝑥)

• Tangent Hyperbolic: 𝑇𝑎𝑛ℎ(𝑥) = exp(𝑥)−exp(−𝑥)

exp(𝑥)+exp (−𝑥)

• Softmax: 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp(𝑥𝑗)𝑗

• Identity just leaves the value untouched

45

Figure 23: Different Activation Functions (38)

A full list of Activation Functions contained in PyTorch can be found in the PyTorch

Documentation (39).

4.3.2 Loss Function

A neural network takes all input data, PyTorch calls these tensors and runs it through

all neurons and at the end it makes a prediction. This prediction then is compared to

the target for that data and a loss is calculated how far the prediction is from the target.

The function determining this distance is called a Loss Function. This is where the

learning part in Machine Learning comes into play, now the machine tries to adjust all

weights and biases to minimize this loss or error. A single run over all data points is

called an epoch, training a network successfully takes several epochs. How many can

only be determined through training. (27) (32) (40)

In this work I only used the categorical Crossentropyloss function and the information

about it are lifted from the PyTorch Documentation (41). Crossentropyloss is a

combination of logarithmic softmax and function called negative log likelihood loss.

For every category i the final loss function is:

𝐶𝐸 = − ∑ 𝑡𝑖⏟
𝑡𝑎𝑟𝑔𝑒𝑡

log 𝑠𝑖⏟
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐶⏞
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss

46

Another typical, but not suitable for my proposes, loss function is Mean Squared Error:

𝑀𝑆𝐸 =
1

𝑁
∑(𝑡𝑖 − 𝑠𝑖)

2

4.3.3 Optimizer & Gradient Descent

Figure 24: Showing the difference between a local and global minimum

For the equations and mathematics, I consulted the following articles:

(42) (43) (44) (45) (46)

Just calculating the error made on a data set is not enough for learning to have an effect.

The optimizers task is it to update the weights and biases of the network based on the

loss value calculated through the loss function. One has to be aware of the difference

between a local and global minimum. This is shown in Figure 24, where the point on

the right is only a local minimum and not a global. It can always happen that the

optimizer ends up in the local minimum and it will stop optimzing. (47)

Figure 25: Comparision of Gradient Descent, Stochastic Gradient Descent and SGD with Momentum (44)

47

There are several optimizers, the most popular are (48):

Gradient Descent (GD)

This is the simplest optimizer, it updates every paratmer 𝜃 just by the error-/loss-

gradient times a scaling factor 𝜇 called the learning rate:

𝜃𝑡+1 = 𝜃𝑡 − 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃)

The memory requirements are high, since all data points are taken into account and

updates are infrequent. This means it will ploddingly converge into the minimum. Also

they have the same learning rate for all parameters, which causes problems with

sparse data sets or data with a wide range of differing frequencies or where the weight

matrix is ill conditioned. Further the learning rate is fixed, which can be compensated

by using a scheduler to adjust the learning rate. These usually adjust the learning rate

depending on the epoch and not based on convergence. How this algorithm reaches a

loss minimum is shown on the left in Figure 25. This algorithm was suggested long

before ML was conceived by a mathematician by the name Augustin-Louis Cauchy15.

Stochastic Gradient Descent (SGD)

Here we only test for a smaller sample 𝑥𝑖 , 𝑦𝑖 of the data set, which reduces the amount

of memory needed, while at the same time increasing the update frequency. The size

of these samples is called batch size. But this means the optimizer will oscillate. This

can be seen in the middle in Figure 25. The oscillation might lead to overshooting the

minimum.

𝜃𝑡+1 = 𝜃𝑡 − 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃, 𝑥𝑗 , 𝑦𝑗)

As with Gradient Descent we have only a single and fixed learning rate for all

parameters.

Stochastic Gradient Descent with Momentum (SGD with Momentum)

In order to rectify the oscillation of SGD a momentum 𝛾 was introduced:

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃, 𝑥𝑖 , 𝑦𝑖)

𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡

15 Augustin-Louis Cauchy (21 August 1789 – 23 May 1857)

48

This additional hyperparameter leads to faster convergence, but it is one more value

that needs to be fiddled with. With this optimizer the learning rate also stays fixed. A

comparison with the previous two optimizers is shown in Figure 25, SGD with

Momentum is in the right.

Adam

Here a first and second order momentum 𝑚𝑡 and 𝑣𝑡 are introduced based on the

gradient 𝑔𝑡, the parameters 𝛽1 and 𝛽2 lay between zero and one:

𝑔𝑡 = ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃𝑡)

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2

�̂�𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

�̂�𝑡 =
𝑣𝑡

(1 − 𝛽2
𝑡)

𝜃𝑡 = 𝜃𝑡−1 − 𝜇 ⋅
�̂�𝑡

(√�̂�𝑡 + 𝜖)

the parameters 𝑚𝑡 and 𝑣𝑡 are set to zero initially and they tend to stay close to zero, this

is why �̂�𝑡 and �̂�𝑡 are used to compensate for that. This optimizer converges fast, but at

the cost of computational intensity.

AdaGrad

Gradient Descent and all modifications of it have the problems that the learning rate is

fixed and that there is a single learning rate for all parameters. This is compensated in

this optimizer by scaling the learning rate by 𝐺𝑡 and a tiny stability constant 𝜖:

𝑔𝑡,𝑖 = ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃𝑡,𝑖)

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜇

√𝐺𝑡,𝑖𝑖 + 𝜖
⋅ 𝑔𝑡,𝑖

𝐺𝑡 is diagonal matrix, containing the square sums of previous gradients, thus the

learning rate is scaled according to the gradient. The learning rate falls too fast and the

network stops learning, because the square sums coalesce to a too large sum over time.

49

AdaDelta

AdaDelta introduces a moving average of the square root sums 𝐸[𝑔(𝑤)2], it has a cut off

𝑤 for how far into the past it goes and it has a scaling factor 𝛾 similar to SGD and Adam:

𝐸[𝑔(𝑤)2](𝑡) = 𝛾𝐸[𝑔(𝑤)2](𝑡 − 1) + (1 − 𝛾)𝑔𝑡
2

𝜃𝑡+1 = 𝜃𝑡 −
𝜇

√𝐸[𝑔(𝑤)2](𝑡) + 𝜖
⋅ 𝑔𝑡

This prevents the accumulation of gradient values and thus the learning rate does not

fall too fast. This optimizer is computationally intensive.

Root Mean Square Proverbialities (RMSprop)

The last of the popular optimizers resembles AdaDelta insofar that it uses a moving

average of square sums of previous gradients.

𝐸[𝑔2](𝑡) = 𝛾𝐸[𝑔2](𝑡 − 1) + (1 − 𝛾) (
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝜃
)
2

𝜃𝑖𝑗(𝑡) = 𝜃𝑖𝑗(𝑡 − 1) −
𝜇

√𝐸[𝑔2](𝑡)

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝜃𝑖𝑗

In Figure 25 is a comparison between GD, SGD and SGD with Momentum and how they

each try to find the minium of the loss function. RMSprop is a generally recommended

optimizer for a wide range of problems (27).

A more advanced optimizer has been proposed, which takes the Hessian of the loss

function into account and can theoretically find the global minimum of the loss

function in fewer steps, but at the costs of higher computational requirements. It is

called AdaHessian and employs an approximation of the eigenvalues of the Hessian

Matrix (49).

50

4.3.4 What is an artificial neuron?

Figure 26: An Artificial Neuron (34)

In Figure 26 is a schema of an artificial neuron. In the figure we see three inputs 𝑥𝑖,

which are just numbers. They are multiplied by a weight 𝑤𝑖 and all of this is summed

up in 𝑧, where we also add or subtract a bias 𝑏 and send that to the activation function

𝜎. The final output is then calculated as:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎 (𝑏 +∑𝑥𝑖𝑤𝑖
𝑖=1

)

4.3.5 Linear layer

A neuron has one output, hence a layer has as many outputs as it has neurons and each

neuron has as many inputs as the previous layer has neurons. The first layer has as

many inputs as there are features in the data set and the last layer has as many neurons

as there are categories.

Handling a data set with widely varying features can be difficult. There are strategies,

called regularization that can help with getting a grip on the data. I will talk about two

of these techniques since they are the two that I tested and used. They are called out

dropout rate and the batchnorm and third one is called L1 & L2 regularization.

The easiest way to prevent overfitting is to introduce dropout rates, where random

neuros are set to 0. This has the effect that for each input only a subset of the network

will be trained and overfitting will be prevented since smaller networks cannot capture

as many details of a data set. An illustration of this is shown in Figure 27, where random

neurons are set to 0. (28) (27) (32)

51

Figure 27: Illustration of dropout, on the left without dropout and on the right different examples of

subnetworks (28)

The second strategy is to normalize each batch in each layer. This helps already in

smaller networks with the gradient and finding the loss minimum, but for larger

networks it is even necessary in order to train them. It has been empirically shown,

that batch norm helps with convergence. (27)

Let us turn our attention to what happens in a linear layer. Given a layer of m neurons

and n neurons on the previous layer, we can write all weights W of one layer into a

matrix and all biases B of the same layer into a vector:

𝑊 =

(

𝑊11 𝑊12 … 𝑊1𝑛−1 𝑊1𝑛
𝑊21 𝑊22 …

⋮ ⋱ ⋮

𝑊𝑚1 … 𝑊𝑚𝑛)

 𝐵 =

(

𝑏1
𝑏2
⋮

𝑏𝑚−1
𝑏𝑚)

Together with an input vector we can calculate the output as:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ⋅ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠

52

=

(

𝑊11 𝑊12 … 𝑊1𝑛−1 𝑊1𝑛
𝑊21 𝑊22 …

⋮ ⋱ ⋮

𝑊𝑚1 … 𝑊𝑚𝑛)

⋅

(

𝑥1
𝑥2
⋮

𝑥𝑚−1
𝑥𝑚)

+

(

𝑏1
𝑏2
⋮

𝑏𝑚−1
𝑏𝑚)

=

(

𝑏1 +∑ 𝑊1𝑖𝑥𝑖
𝑛

𝑖=1

𝑏2 +∑ 𝑊2𝑖𝑥𝑖
𝑛

𝑖=1

⋮

𝑏𝑚−1 +∑ 𝑊𝑚−1𝑖𝑥𝑖
𝑛

𝑖=1

𝑏𝑚 +∑ 𝑊𝑚𝑖𝑥𝑖
𝑛

𝑖=1)

Something curios happened here. Our input is not a matrix, which we would expect if

given an image but a vector. What happened here is that the matrix was reshaped into

vector 𝑛 ×𝑚 → 1 × 𝑛 ⋅ 𝑚, in this transformation no information was lost, since all values

and their relations were kept. Here we have just matrix-vector multiplication. This

output will be ran through an activation function and used as input for the next layer.

4.3.6 Convolutional layer

The introduction of convolutional layers lead to breakthroughs in digital image

recognition. These layers look at parts of an image with a running filter or kernel and

map this filter into one pixel of a target image. The best way to understand what they

are doing is to look at the illustration in Figure 28, where we have an input on the left.

In the middle we see the filter, sometimes called a kernel, and an output on the right

side. This has two effects, first is that it denoises images and second they learn local

patterns within images unlike linear layer which only learn global characteristics (27)

(28). A convolutional layer has the following arguments (50):

• Input size

• Output size

• Filter or kernel size

• Stride

• Padding

• Pooling

53

Figure 28: How a convolutional layer works (51)

Input size are the dimensions and number of channels of the input images, output size

is in how many channels the output image should be decomposed. The filter size

determines how many pixels will be enrolled into one. Larger filters allow looking at

larger features, but they lose the ability to abstract features out of their position. The

inverse is true for smaller filters and one has to balance the filter size in accordance to

the input image. The number of channels can be interpreted as with how many filters

the layer is looking at a given input and thus more channels will find more shapes

within the image. Stride is the step size of the filter or how many pixels the filter jumps

if set to one every pixel will be looked at. Padding is the amount of pixel padding around

the image in order to maintain image size. One can pad the image with just zeros or

simply extent the border pixels further. Finally pooling averages several pixels into

one. (50)

A beautiful way of showing how convolutional layers work is shown in Figure 29. We

see how each layer breaks down the bicycle into parts. On the top we have the bike,

then one step down we get the frame, a wheel, the saddle and finally on the button each

single component, that makes up a bike.

54

Figure 29: The breaking down of a bike into its components (51)

Convolution in mathematics is defined as (28):

𝑠(𝑡) = ∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 = (𝑥 ∗ 𝑤)(𝑡)

This is one dimensional and continues and since we are concerned with two

dimensional bitmaps, we will change to a discrete sum and convolute in two directions

(28):

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑚,𝑛

If we want to maintain images size, we can employ padding, which creates a border

around the image. This can just be the outer values mirrored or just filling in zeros. The

padding size p is then, given a kernel size f (52):

𝑝 =
𝑓 − 1

2

Given an input size 𝑛𝑖𝑛, a kernel size f, padding p and stride s, one can calculate the

output size 𝑛𝑜𝑢𝑡 (52):

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

Stride is the speed or step size at which the filter moves over the image. Here is an

example of how convolution works. It is taken from (37):

(

[

1 0
1 0

0 1
1 0

1 1
0 1

0 0
0 1

]

⏟
𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

∗ [
−1 2
4 −2

]
⏟

𝑓𝑖𝑙𝑡𝑒𝑟

)

+ 1⏟
𝑏𝑖𝑎𝑠

= [
4 −1 7
2 7 0
0 4 −1

]
⏟
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

[
1 0
1 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 4

[
0 0
0 1

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = −1

55

[
0 1
1 0

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 1 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 7

[
1 0
1 1

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 1 ⋅ (−2) + 1 = 2

[
0 1
1 0

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 1 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 0

[
1 0
0 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 0 ⋅ (−2) + 1 = 7

[
1 1
0 1

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 1 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = 0

[
1 0
1 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 4

[
0 0
0 1

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = −1

in our example the equation for the output size is as follows:

𝑛𝑜𝑢𝑡 =
4 + 2 ⋅ 0 − 2

2
+ 1 = 3

4.3.7 Transposed Convolutional Layer

Figure 30: How Transposed Convolution works (53)

A method of upscaling an image is called transposed convolutional layer. The name is

a bit misleading, since it is not a convolution at all. In a convolution several pixels are

multiplied by a matrix and summed into a single pixel. In principle it works similar to

a convolutional layer, but instead of compressing the image size, it increases the image

size. But it is important to understand that it is not the inverse of a convolution, hence

it is called transposed convolution and not deconvolution. It still retains all the

parameters of a convolutional layer, but the filter is applied in such a manner, that it

scales up the image and not down. (54)

With transposed convolution we take a single pixel and multiply it with a matrix. Then

we patch these matrices together by summing the overlaps. In Figure 30 is an example

how this process works. We do this to up-sample the image, but unlike other up-

sampling algorithms, transposed convolution has learnable parameters. (55)

56

4.3.8 Other Layer Types

There are other layer types, like recurrent neural network (RNN) and Long short-term

memory (LSTM), but I did not implement them, since they are geared towards

sequential data types like language or video. It could still be a subject for further

research, if these types of layers can be employed in data analysis for the PXD. (27) (28)

4.3.9 The Basic Working Principle of a Neural Network

For the mathematics and the equations of backpropagation I reference (56) (57).

Backpropagation is the process of adjusting the weights of the network to minimize the

errors. This task is taken care of by optimizers. While I already hinted at how a neural

network learns, I will summarize the principle at this point. The basic workflow is

shown in Figure 31 and one can follow along each step laid out there.

The first step is initializing the network. Each weight and bias can be initialized either

with zeros, randomly or through modified random manners called He or Xavier. The

latter two take the sizes of different layers into account (58).

Xavier and He initializes the weights through a uniform distribution U and scaled by

the size of the previous layer and biases are set to 0 (59):

𝑊𝑖𝑗 ∝ 𝑈 [−
1

√𝑛
,
1

√𝑛
]

It was empirically shown that this initialization leads to better training results (59).

We can imagine a layer as a function 𝑓(𝑥) = 𝑦 which maps an input x onto an output y.

The concept of deep learning is then introduced by chaining several layers or functions

together (28):

𝑓(𝑥) = 𝑓3(𝑓2(𝑓1(𝑥))) = 𝑦 = 𝑓1 ∘ 𝑓2 ∘ 𝑓3(𝑥)

By now it should be clear why we talked about the chain rule in the mathematics

section, since for backpropagation we need to apply it here:

𝑓′(𝑥) = 𝑓3
′
(𝑓2(𝑓1(𝑥))) ⋅ 𝑓2

′
(𝑓1(𝑥)) ⋅ 𝑓1

′
(𝑥)

57

Figure 31: Basic work principle of neural network (27)

The network naïvely reads in the first data batch in form of a series of vectors:

𝑥(1) = (

𝑥1

𝑥2

⋮
𝑥𝑚

)

the index m is the input size. The input layer has m inputs and n neurons:

𝑥(2) = 𝜎 (∑(𝑏𝑗
(1)
+∑𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖

(1)

𝑚

𝑖=1

)

𝑛

𝑗=1

)

The first hidden layer has m inputs and l neurons:

𝑥(3) = 𝜎 (∑(𝑏𝑗
(2) +∑𝑤𝑗𝑖

(2)
⋅ 𝑥𝑖

(2)

𝑛

𝑖=1

)

𝑙

𝑗=1

)

We can generalize this step:

𝑥(𝑘) = 𝜎

(

∑(𝑏𝑖

(𝑘−1) ∑ 𝑤𝑖𝑗
(𝑘−1)

𝑥(𝑘−1)
𝑚(𝑘−1)

𝑗=1

)

𝑚𝑘

𝑖=1⏟
=𝑧𝑘)

= 𝜎(𝑧𝑘)

This prediction will in all likelihood be completely off, but this is just the starting point.

In my project I will employ a softmax activation function on the last layer. It means the

norm of the output will be equal to one, thus making it a probability for each category.

The prediction is compared to the target in the loss function:

𝐸(𝑥) = ∑ 𝑡𝑖 log10 𝑥𝑖

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1

Its score is then given to the optimizer, which then adjusts the weights and biases in

order to minimize the loss for the next batch. This step is called backpropagation,

58

because the error is propagating back through the network. Now we want to know the

amount of error caused by every weight and bias, which is given by:

𝜕𝐸

𝜕𝜃𝑖𝑗
(𝑘)
=

𝜕𝐸

𝜕𝑧𝑖
(𝑘)
⋅
𝜕𝑧𝑖

(𝑘)

𝜕𝜃𝑖𝑗
(𝑘)

For that we need something called the local gradient of layer k:

𝛿(𝑘) = ∇𝑥(𝑘)𝐸

Our task is to calculate the local gradient of each neuron i in layer, but we will start

with the last layer:

𝛿𝑖
(𝐿)
=

𝜕𝐸

𝜕𝑧𝑖
(𝐿)

=⏞

𝐶ℎ𝑎𝑖𝑛
𝑟𝑢𝑙𝑒 𝜕𝐸

𝜕𝑥𝑖
(𝐿)
⋅
𝜕𝑎𝑖

(𝐿)

𝜕𝑧𝑖
(𝐿)
=

𝜕𝐸

𝜕𝑥𝑖
(𝐿)
⋅ 𝜎′ (𝑧𝑖

(𝐿))

The next step is to go one layer deeper. The error here is determined by 𝜕𝐸
𝜕𝑥𝑖

(𝑘)⁄ which

depends on all previous outputs; hence we get in a similar manner as above:

𝛿𝑖
(𝑘)
= ∑

𝜕𝐸

𝜕𝑧𝑗
(𝑘+1)

⏟

=𝛿𝑗
(𝑘+1)

𝑛(𝑛+1)

𝑗

⋅
𝜕𝑧𝑗

(𝑘+1)

𝜕𝑧𝑖
(𝑘)

⏟

𝜃𝑗𝑖
(𝑘+1)

⋅𝜎′(𝑧𝑖
(𝑘)
)

= ∑ 𝜃𝑗𝑖
(𝑛+1)𝜎′ (𝑧𝑖

(𝑘)) 𝛿𝑗
(𝑘+1)

𝑛(𝑛+1)

𝑗

This gives us finally:

𝜕𝐸

𝜕𝑤𝑖𝑗
(𝑘)
= 𝜎𝑗

(𝑘−1)
𝛿𝑖
(𝑘)

Now we know how much we have to change the weights and biases to make a smaller

error in the next epoch. The new values for each weight and bias are given by:

𝜃𝑡+1 = 𝜃𝑡 − 𝜇∇θt𝐸

This is then repeated until all batches have been processed and then again until all

training cycles, called epochs, have been run. In the last step it is important to stress,

that this is a simple gradient decent. We could have used another and more complex

algorithm. (28) (27) (32)

4.3.10 A List of Hyperparameters

Table 2 contains a list of hyperparameters concerning neural networks. These are the

numerical values, that fully characterize a neural network and its learning process. It

is based on a table from (28) which I extended a bit to the best of my understanding.

59

Table 2: List of hyperparameters to tune (28)

Hyperparameter
To increase

capacity
Reason Premonition

Number of hidden

layers
increase

more details can

be encoded,

enables non-linear

analysis

increases

calculation time

and needs longer

training

Number of Neurons

per Layer
increase

more details can

be encoded

increases

calculation time

Dropout rate decrease
finer details can be

captured

learning rate needs

to be adjusted to

compensate for

overfitting

Learning rate tune

lower learning

rates stave off over

fitting, too low

learning rates lead

to underfitting

lots of testing

needs to be done to

find a proper

learning rate

Decay of learning

rate
tune

allows higher

learning rates,

while preventing

overfitting in the

long run

lots of testing

needs to be done to

find a proper

decay rate

Filter size of

convolutional

layers

increase

the right filter size

can capture image

features perfectly

too large filter

compress images

and lead to huge

information loss

60

Number of

channels
increase

more patterns can

be found in input

increases the

computational

load

Image padding increase

compsates for loss

in case of larger

filters

it only mitigates

information loss

and not curtail it

Momentum tune

larger momentum

leads to faster

convergence

with too large

momentum the

optimizer will

overshoot minima

Batch size tune

smaller batch sizes

increase

convergence,

larger batch sizes

allow more

generalization

small batch sizes

can lead to

overfitting, while

larger one lead to

underfitting

Epochs depends

4.4 Python and PyTorch

Python is a high-level scripting language, still maintaining object orientation and is

aimed at non-computer-science scientists. Its main goal thus is to be easily learnable,

shedding the complexity of the more traditional languages and producing readable

code. One big advantage of Python over other high-level languages is its extensibility;

modules for Python can be written in Python or in C and interact directly with Python,

this makes extending Python easy, while maintaining speed and reliability. Because of

the high-level character, its intended target audience, namely scientists and its

extensibility make it suitable for this project.

Python was first released 1991, the next verion (2.0) was released 2000 and the current

release (3.0) is from 2008. (60) (61) (62)

61

PyTorch is an open-source framework for developing neural networks and more

general for Machine Learning. It was developed by Facebook and first released in 2016

(63).

The syntax and language design of PyTorch is similar to Python, which makes it highly

approachable to newcomers, if they already have some knowledge in Python.

Additionally, PyTorch has a large community, which can help in case of problems or

issues. It has a stronger recommendation for scientists over its alternative Tensorflow.

PyTorch is regarded as faster and it allows more control over the neural network than

Tensorflow (64) (65) (66) (67).

The reasons why I choose Python over any other language, for example something like

C++, which is tremendously faster, was that I could develop and test my code quicker.

In other words, Python and PyTorch allowed me to iterate in shorter cycles. Also it is

more adaptable and easier to read. Especially the employment of PyTorch to develop

the artificial neural networks made it incredible easy to do so. Networks coded in

PyTorch performe very well, since Python is only used to create the architecture, while

underneath Nvidia CUDA and C++ are running (68). This enables the use of GPUs,

massive parallelization and distribution over several computing nodes.

62

5 Statistics

Never tell me the odds

Han Solo

We do not need much, but I still want them to be defined and explained, so let us talk

about the important definitions.

Definition 1 (Confusion Matrix):

Let n be the number of classes, then the confusion matrix is a n×n matrix. Each column

contains the assigned class and each row contains the actual class. Let 0≥i≥n∈ℕ, then

row i of the confusion matrix contains all elements of class i and how often it was

assigned to each class. The sum of row i is the number of elements in class i. Column i

corresponds to the number of guesses per class and its sum is the number of total

guesses per class i. (69) (70) (71)

Figure 32: An Example Confusion Matrix based on simple Test Data

Figure 32 shows a depiction of the confusion matrix, with some results from test data

generated for this work. The test data are simple nine by nine matrices with either one

or two horizontal or vertical lines. This gives us four classes, but sometimes two lines

fall together and an item from a class of two lines looks like one from the class of a

single line.

Now to understand this matrix, the class test1 was correctly predicted 24.511 times and

65 times items of this class were predicted to be of class test2. Class test2 was correctly

63

guessed 22.640 times and 2.772 times items of this class were thought to be of class test1

and 60 of test3.

Remark:

With a perfect neural network the confusion matrix would simply be a diagonal matrix

with the number of elements per class along the diagonal. Furthermore the elements

of the confusion matrix are natural numbers.

Definition 2 (True Positive):

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined

by Definition 1, then true positive (TP) for class i is given by (72):

TPi = Mii

Definition 3 (True Negative):

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined

by Definition 1, then true negative (TN) for class i is given by (72):

TNi = ∑∑Mjk

n

k≠i

n

j≠i

Definition 4 (False Positive):

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined

by Definition 1, then false positive (FP) for class i is given by (72):

FPi = ∑Mji

n

j≠i

Definition 5 (False Negative):

Let n be the number of classes and 0≥i≥n ∈ℕ, and let M be a confusion matrix as defined

by Definition 1, then false negative (FN) for class i is given by (72):

FNi = ∑Mij

n

j≠i

64

Remark:

The above definitions are given for a multiclass case. In a binary case, meaning just

two classes, the confusion matrix will be 2×2 matrix and the sums above will just be

single numbers. Since the confusion matrix consists only of natural numbers, the four

definitions from above will all be natural numbers as well. Figure 33 shows how to

read the above given definitions from a confusion matrix.

Figure 33: How to read TP, TN, FN & FP from a Confusion Matrix (73)

Definition 6 (Accuracy):

Let TP, TN, FP and FN be a true positive, true negative, false positive and false negative

respectively and as defined above, then accuracy a is given by (69) (71):

a =
TP + TN

TP + TN + FP + FN

Definition 7 (Precision):

Let TP, TN and FP be a true positive, true negative and false positive respectively and

as defined above, then precision p is given by (69) (71):

p =
TP

TP + FP

65

Definition 8 (Recall):

Let TP, TN and FN be a true positive, true negative and false negative respectively and

as defined above, then recall r is given by (74) (71):

r =
TP

TP + FN

Definition 9 (Weighted F metric):

Let p be a precision and r be a recall as defined above and β be a number, then the

weighted F metric fβ is given by:

fβ = (1 +β
2
) ×

p × r

β
2
p + r

Remark:

If we set β= 1 in the weighted F metric we get the F1 score (74).

Definition 10 (Matthew Correlation Coefficient):

Let TP, TN, FP and FN be a true positive, true negative, false positive and false negative

respectively and as defined above, then the Matthew Correlation Coefficient MCC is

given by (69) (75):

MCC =
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Remark:

The Matthew Correlation Coefficient as defined above will be a real number between -

1 and +1, with -1 meaning that every guess was total wrong, 0 meaning that all guesses

were random and +1 meaning, that the network worked perfectly. The -1 case is not the

worst situation, one would flip the assumptions to get to +1. Only in case of MCC=0 we

would be in a bad position, since it means there is no correlation between input and

guess. The advantage of Matthew Correlation Coefficient over other scores is, that it

works good with multilabel systems and it suits even unbalanced data sets, meaning

data sets with vastly different amounts of data per label (75).

66

6 Theoretical Background

The miracle of the appropriateness of the language of mathematics for the formulation of the

laws of physics is a wonderful gift which we neither understand nor deserve.

Eugene Wigner

6.1 The Standard Model

All models are wrong, but some are useful

George E. P. Box

The SM is the crown achievement of modern-day physics, combing Maxwell’s16 theory

of electrodynamics with Einstein’s Special Relativity. The former combined electronic

forces with magnetic forces and the latter is an extension of Newtonian17 Mechanics,

postulating a four dimensional space, combining space and time into spacetime and

fixing the speed of light to an absolute.

In Figure 34 we see a depiction of the standard model with the three generations of the

quark and lepton families as outer circle, the gauge bosons18 in the middle, governing

the fundamental forces and at the center is the elusive Higgs.

The basis for the SM is Quantum Field Theory (QFT), where particles are described as

excitations in field equations. In QFT forces are carried by exchange particles, which

are virtual particles or fluctuations in the field equations. The reach or life times of

these exchange particles are determined by Heisenberg’s19 uncertainty principle (76).

The field equations can be calculated by using Lagragian equations. The gauge group

of the SM Lagragian is 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌, the generators for SU(2) and SU(3) the

three Pauli20- and Gell-Mann21-matrices respectively (77).

16 James Clerk Maxwell (13 June 1831 – 5 November 1879)
17 Sir Isaac Newton (25 December 1642 – 20 March 1727)
18 Satyendra Nath Bose (1 January 1894 – 4 February 1974)
19 Werner Karl Heisenberg (5 December 1901 – 1 February 1976)

 Allegedly Bohr made Heisenberg cry (127).
20 Wolfgang Ernst Pauli (25 April 1900 – 15 December 1958)
21 Murray Gell-Mann (15 September 1929 – 24 May 2019)

67

Figure 34: Standard Model (78)

For further details, one should check Table 3 for information on the forces and Table 4

for details about each particle of the SM.

Table 3: The forces of the SM (and gravity) with their exchange particles (79) (80) (81)

 Strong Weak Electromagnetic Gravitation

Current Theory

Quantum

Chroma

Dynamics

(QCD)

Electro Weak

Theory

Quantum

Electro

Dynamics

(QED)

General

Relativity

Charge Color Weak Charge Electric Charge

Exchange

Particle
8 Gluons (g) W±, Z0 Photons (γ)

Graviton

(hypothetical)

Mass / GeV 0 80, 90 0 0

Long-distance

behavior
~𝑟 1

𝑟
𝑒−𝑚𝑊,𝑍𝑟

1

𝑟

1

𝑟

Range / m 2 × 10−15 2 × 10−18 ∞ ∞

Coupling

Parameter

𝛼𝑠𝑡𝑟𝑜𝑛𝑔

=
1

2
…
1

10

𝛼𝑤𝑒𝑎𝑘 =
1

30
 𝛼𝑒𝑚 =

1

137

𝛼𝑔

=
1

1045
…

1

1038

68

Relative

Strength
1 10−15 10−2 10−41

JP 1- 1- 1 2

Table 4: The three generations of leptons and quarks (79)

Fermion

1st

Gen.

2nd

Gen.

3rd

Gen. Charge Color

Lefthanded

Isospin

Righthanded

Isospin Spin

Leptons
νe νμ ντ 0

-- ½
--

½
e μ τ -1 0

Quarks
u c t +⅔

r, g, b ½
0

½
d s b -⅓ 0

But let us have a look at all parts of the SM Lagragian (82):

ℒ𝑆𝑀 = ℒ𝑌𝑎𝑛𝑔−𝑀𝑖𝑙𝑙𝑠⏟
ℒ𝑄𝐶𝐷+ℒ𝐼𝑊+ℒ𝑌

+ ℒ𝑊𝑒𝑦𝑙−𝐷𝑖𝑟𝑎𝑐 + ℒ𝑌𝑢𝑘𝑎𝑤𝑎 + ℒ𝐻𝑖𝑔𝑔𝑠

The Yang22-Mills23 sector compromises of QCD, weak isospin field strength and the

hypercharge, sometimes ℒ𝑄𝐶𝐷 and ℒ𝑌 and combined to a gauge Lagrangian and the

Weyl24-Dirac25 sector is sometimes called fermion sector (77). Other times the Yang-

Mills and Weyle-Dirac sector are combined and expressed as (83):

ℒ𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑖�̅�(𝐷
𝜇𝛾𝜇)𝜓

which is eerily similar to the Dirac equation without mass term. The other terms are

then hidden inside the covariant derivative 𝐷𝜇 (83). I will not write the full Lagragian,

because it is not necessary for this work and a bit excessive and instead I will focus on

the Yukawa sector of the SM. This is the sector which gives rise to the CKM matrix,

which governs CP violation in the SM. The gauge groups and the sectors of SM are

22 Chen-Ning Yang (1 October 1922)
23 Robert Laurence Mills (15 April 1927 – 27 October 1999)
24 Hermann Klaus Hugo Weyl (9 November 1885 – 8 December 1955)
25 Wolfgang Pauli: »There is no God and Dirac is His prophet«

69

tabulated in Table 5 (77). Sometimes there is an additional ghost Lagrangian to

compensate for too many degrees of freedom.

Table 5: The gauge groups of the SM (77)

Group Lagrangian fields
After electroweak

symmetry breaking

SU(3) gluons gluons

SU(2) 𝑊𝜇
1,2,3 𝑊𝜇

±, 𝑍𝜇

U(1) 𝐵𝜇 𝐴𝜇

The Yukawa26 Lagragian density belongs to 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge groups (77) and its

symmetry is spontaneously broken by the presence of the Higgs mechanism and this is

where the mass of W and Z bonsons comes from. This Largangian is the source of quark

mixing (77) (82) (83). The Yukawa Largangian reads as follows (77) (84) (85):

ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = −{(
𝑒̅
�̅�
𝜏̅
)

𝑇

⋅ (

𝑚𝑒 0 0
0 𝑚𝜇 0

0 0 𝑚𝜏

) ⋅ (
𝑒
𝜇
𝜏
) + (

�̅�
𝑐̅
𝑡̅
)

𝑇

⋅ (
𝑚𝑢 0 0
0 𝑚𝑐 0
0 0 𝑚𝑡

) ⋅ (
𝑢
𝑐
𝑡
) + (

�̅�
�̅�
�̅�

)

𝑇

⋅ (
𝑚𝑑 0 0
0 𝑚𝑠 0
0 0 𝑚𝑡

) ⋅ (
𝑑
𝑠
𝑏
)} ⋅ (1 +

𝐻

𝑣
)

H is a scalar Higgs field and v is the vacuum expectation value (85) and dsb are linear

combinations of electroweak eigenstates (77):

(
𝑑
𝑠
𝑏
)

⏟
𝑚𝑎𝑠𝑠

𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

= 𝑉𝐶𝐾𝑀 ⋅ (
𝑑′
𝑠′
𝑏′
)

⏟
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑤𝑒𝑎𝑘
𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

This is where the famous CKM matrix comes in, but more on it in a later section. It is a

matrix product of two unitary matrices, which allow generation mixing, and is thus

also unitary. One can show, that the meson octet and baryon decuplet/octet are

generated through SU(N) gauge symmetries and the use of a quark Lagrangian (77):

26 Hideki Yukawa (23 January Meiji 40 – 8 September Showa 56)

70

ℒ𝑞𝑢𝑎𝑟𝑘 = ∑ �̅�𝑓(𝑖𝛾
𝜇𝐷𝜇 −𝑚𝑓)

𝑓∈{𝑢,𝑑,𝑠}

The ansatz here is to use three-by-three ladder matrices (77).

6.1.1 What is Gauge Theory

The basic idea of gauge theories are transformations of fields and potentials that leave

the underlying equations of motion invariant. In other words, we transform a

mathematical construct, that cannot be measured, that does not change the

mathematical object describing what can be measured. Given a potential 𝜙 we

calculate the force by taking the derivative:

𝐸 = −∇𝜙 − 𝜕𝑡𝐴

Now we can add any terms that vanish when taking the gradient of the potential. For

example:

𝜙′ = 𝜙 + 𝜕𝑡Λ 𝐴
′ = 𝐴 − ∇Λ

These transformations form a mathematical group that is called gauge group in

physics. This basic idea was first introduced by Clark Maxwell in the theory of

electrodynamics. The above example can be easily extended to a four-dimensional

potential:

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 + 𝜕𝜇𝑓

This kind of transformation is central to the quantum field theories and the theory of

relativity. The same principle can be applied to a Lagragian. Adding additional terms

to the Lagragian that do not change the resulting equations of motion. (86) (87) (88)

6.1.2 Left- and Right-Handedness

There is an intrinsic difference between particles whose spin is aligned colinear and

antilinear to their momentum. In physics this called helicity or left- and right-

handedness, this is shown in Figure 35. This is important to understand, because the

four fundamental forces act differently on left- and right-handed particles. The weak

force for instance acts only on left-handed particles and all neutrinos are left-handed.

(89) (79)

71

Figure 35: Helicity of particles and anti-particles (90)

Helicity is expressed by (83):

ℎ =
1

2
�⃗� ⋅ �̂�

CP violation manifests itself by not conserving helicity (83). Left-handed particles have

a helicity of ℎ = −1 and right-handed ℎ = +1 (90).

6.1.3 CPT Theorem

This section is mostly based on the lecture notes for N Tunings lecture on CP violation

(83) and on the article CP violation in the B system by T. Gershon and V.V. Gligorov (91).

If I used other sources to supplement the information presented here, I will mention it

explicitly.

CPT stands for charge conjugate, parity and time and consists of three operators. The

first in the list flips all quantum numbers, hence it can transform between particle and

anti-particle. The second mirrors all spatial coordinates and the last is the time reversal

operator, which turns time around.

In order to get a better understanding, let us look at the Dirac equation for QED:

(𝑖𝛾𝜇𝜕𝜇 − 𝛾
𝜇𝑒𝐴𝜇 −𝑚)𝜓(�⃗�, 𝑡) = 0

Here 𝛾𝜇 are the Dirac matrices, 𝐴𝜇 is the four potential and 𝜓 is a four-spinor. Now we

will test how each operator acts on our spinor defined by the equation above. First the

parity operator:

𝑃: 𝜓(�⃗�, 𝑡) → 𝛾0𝜓(−�⃗�, 𝑡) = 𝑃𝜓(−�⃗�, 𝑡)

then we check charge conjugate:

𝐶: 𝜓(�⃗�, 𝑡) → 𝑖𝛾2𝜓∗(�⃗�, 𝑡) = 𝑖𝛾2𝛾0�̅�𝑇(�⃗�, 𝑡) = 𝐶�̅�𝑇(�⃗�, 𝑡)

and time reversal:

𝑇:𝜓(�⃗�, 𝑡) → 𝑖𝛾1𝛾3𝜓∗(�⃗�, −𝑡) = 𝑇𝜓∗(�⃗�, −𝑡)

There are two more transformation we have to look at. First the CP operation:

𝐶𝑃𝜓(�⃗�, 𝑡) = 𝑖𝑒𝑖ϕ𝛾2𝛾0𝜓∗(�⃗�, 𝑡)

momentum

spin

particle
momentum

spin

anti-particle

left-handed right-handed

72

and second CPT:

𝐶𝑃𝑇𝜓(�⃗�, 𝑡) = 𝑒𝑖𝜙𝛾5𝜓(−�⃗�,−𝑡)

The results additionally with a scalar field and an axial vector field is shown in Table

6.

Table 6: C and P operations on different field types (83)

Field P C

Scalar Field 𝜙(�⃗�, 𝑡) 𝜙(−�⃗�, 𝑡) 𝜙†(�⃗�, 𝑡)

Dirac Spinor
𝜓(�⃗�, 𝑡) 𝛾0𝜓(−�⃗�, 𝑡) 𝑖𝛾2𝛾0�̅�𝑇(�⃗�, 𝑡)

�̃�(�⃗�, 𝑡) �̅�(−�⃗�, 𝑡)𝛾0 −𝜓𝑇(�⃗�, 𝑡)𝐶−1

Axial Vector Field 𝐴𝜇(�⃗�, 𝑡) −𝐴𝜇(−�⃗�, 𝑡) 𝐴𝜇
†(�⃗�, 𝑡)

Due to the requirement of having Lorentz invariance, we want spinors to be Lorentz

scalars and the way to achieve this is to use bilinear forms. Think of scalar products,

where a dual vector maps a vector to a number. For this we will look at bilinear forms

in Table 7.

Table 7: C, P & T transformations of bilinear forms (83)

 Bilinear P C T CP CPT

scalar �̅�1𝜓2 �̅�1𝜓2 �̅�2𝜓1 �̅�1𝜓2 �̅�2𝜓1 �̅�2𝜓1

pseudo

scalar
�̅�1𝛾5𝜓2 −�̅�1𝛾5𝜓2 �̅�2𝛾5𝜓1 −�̅�1𝛾5𝜓2 −�̅�2𝛾5𝜓1 �̅�2𝛾5𝜓1

vector �̅�1𝛾𝜇𝜓2 �̅�1𝛾
𝜇𝜓2 −�̅�2𝛾𝜇𝜓1 �̅�1𝛾

𝜇𝜓2 −�̅�2𝛾
𝜇𝜓1 −�̅�2𝛾𝜇𝜓1

axial

vector
�̅�1𝛾𝜇𝛾5𝜓2 −�̅�1𝛾

𝜇𝛾5𝜓2 �̅�2𝛾𝜇𝛾5𝜓1 �̅�1𝛾
𝜇𝛾5𝜓2 −�̅�2𝛾

𝜇𝛾5𝜓1 −�̅�2𝛾𝜇𝛾5𝜓1

tensor �̅�1𝜎𝜇𝜈𝜓2 �̅�1𝜎
𝜇𝜈𝜓2 −�̅�2𝜎𝜇𝜈𝜓1 −�̅�1𝜎

𝜇𝜈𝜓2 �̅�2𝜎
𝜇𝜈𝜓1 �̅�2𝜎𝜇𝜈𝜓1

6.1.4 Weak Force

The weak force only acts on left-handed particles (92). It is only observable when the

electromagnetic and strong forces are suppressed. But the weirdness does not stop here

(77):

• from Dirac’s equations we conclude, that C should hold

73

• P should still be a sound symmetry

• from Newtonian’s mechanics we know, that T is reversable

• combined violations in CPT would also break Lorentz invariance

The W boson was discovered 1983 (93). The weak force is hard to observe, because it

has only a tiny cross section (79) (93). The weakness of the Weak Force is is due to W

and Z bosons having such a high mass (79), which comes from the breaking of

symmetry by the presence of a Higgs field. The weak force is only observable when

quark flavors are changed or when neutrinos are involved in the process (93). To gain

some sense of the weakness of the weak force, we can look at the two decays and their

half-life (93):

𝛴+(1189) → 𝑝𝜋0 𝜏 ≈ 10−10𝑠

𝛴0(1192) → 𝛬𝛾 𝜏 ≈ 10−19𝑠

We can compare them to get an understanding of their relative strength (93):

𝑔

𝑒
≈ √

10−19

10−10
≈ 10−5

This means, that the weak force is several orders of magnitude weaker than the

electromagnetic force. From experiments we know the reason is, that the gauge bosons

of weak forces possess a large mass (93). This fact was already mentioned several times

throughout this work.

6.2 CP Violation

6.2.1 Some History

CP violation was first observed 1964 in decays of 𝐾𝑠ℎ𝑜𝑟𝑡 and 𝐾𝑙𝑜𝑛𝑔 by James Cronin27 and

Val Fitsch28 (94). The former should always decay into two pions, whereas the latter

should always decay into three poins (94). But it was observed that 𝐾𝑙𝑜𝑛𝑔 decayed into

27 James Watson Cronin (29 September 1929 – 25 Agust 2016)
28 Val Logsdon Fitch (10 March 1923 – 5 February 2015)

74

two poins, which happened at a rate of 0.1% (95). CP violation happens due to the weak

forces in the quark-mixing matrix (11), which we saw in the Yukawa Lagragian. The

parity of the Kaon system is not well defined, if we look at the parity of these decays

(93):

𝐾+ → 𝜋+𝜋0 𝑃(𝜋+𝜋0) = (−1)(−1) = +1

𝐾+ → 𝜋+𝜋+𝜋− 𝑃(𝜋+𝜋+𝜋−) = (−1)3 = −1

From this we can conclude, that the weak force can change parity, which is not true for

strong and electromagnetic forces (93). CP violation is accounted for by the CKM matrix

in the SM. This matrix comes from the Yukawa sector of the SM Lagragian as was

discussed in The Standard Model. CP violation is thus quantum mechanical

interference.

6.2.2 A general approach to CP violation

The source of CP violation can easily be shown by this form of Yukawa Lagrangian (82)

(83) (89):

ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = 𝑌𝜓𝐿𝜒𝐿𝐻 − 𝑌
∗𝜓𝐿

†𝜎2𝜒𝐿
∗𝐻∗

with Y beging the Yukawa coupling matrices, 𝜓 und 𝜒 arbitrary spinors, H is again a

Higgs doublet and 𝜎2 is the second Pauli matrix. Now if we apply a CP transformation,

the source of CP violation should reveal itself (82) (83):

𝐶𝑃ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = −𝑌𝜓𝐿
†𝜎2𝜒𝐿

∗ 𝐻𝐶𝑃 + 𝑌∗𝜓𝐿
𝑇𝜎2𝜒𝐿

 𝐻∗𝐶𝑃

since we know what the Higgs spinor looks like and that is it simply a complex

conjugate we conclude, that CP is violated if and only if 𝑌 ≠ 𝑌∗ . We see, that CP violation

arises from the Yukawa coupling matrice, if they are not purely real, but contain any

kind of complex numbers. (82) (83)

6.2.3 Three classes of CP violation

This section is based on the lecture by N. Tuning (83) and the report by Greshon and

Gligorov (91). We start with a generic, neutral Meson P, which decays into a final state

f. We can have two eigenstates:

𝑃1 = 𝑝𝑃
0 − 𝑞�̅�0

𝑃2 = 𝑝𝑃
0 + 𝑞�̅�0

75

For the decay we will employ the the Wigner29-Weisskopf30 Hamiltonian31 (77):

𝑖
𝜕

𝜕𝑡
(
𝑝
𝑞) = ℋ (

𝑝
𝑞) = (

𝑚11 −
𝑖

2
Γ11 𝑚12 −

𝑖

2
Γ12

𝑚21 −
𝑖

2
Γ21 𝑚22 −

𝑖

2
Γ22

)(
𝑝
𝑞)

Since ℋ is hermitian, this implies 𝑚21 = 𝑚12∗ and Γ21 = Γ12∗ .

CPT conservation implies 𝑚11 = 𝑚22 = 𝑚 and Γ11 = Γ22∗ = Γ:

𝑖
𝜕

𝜕𝑡
(
𝑝
𝑞) = ℋ (

𝑝
𝑞) = (

𝑚 −
𝑖

2
Γ 𝑚12 −

𝑖

2
Γ12

𝑚12
∗ +

𝑖

2
Γ12
∗ 𝑚−

𝑖

2
Γ

)(
𝑝
𝑞)

Now we know that there is a relative phase between 𝑚12 and Γ12 and if time reversal

holds, we can use this relative phase to make 𝑚12 and Γ12 real. We can calculate the

eigenvalues:

𝜆± = (𝑚 −
𝑖

2
Γ) ± √(𝑚12 −

𝑖

2
Γ12)(𝑚12

∗ +
𝑖

2
Γ12
∗)

and plugging them into:

(
𝑚 −

𝑖

2
Γ 𝑚12 −

𝑖

2
Γ12

𝑚12
∗ +

𝑖

2
Γ12
∗ 𝑚 −

𝑖

2
Γ

)(
𝑝
𝑞) = 𝜆± (

𝑝
𝑞)

which yields, after we make the choice that 𝑃2 is the heavier eigenstate:

𝑞

𝑝
= √

𝑚12
∗ −

𝑖
2 Γ12

∗

𝑚12 −
𝑖
2 Γ12

In the case of decays into final states 𝑓 und 𝑓 ̅we will have four amplitutes:

𝐴(𝑓) = ⟨𝑓|𝑇|𝑃0⟩

𝐴(𝑓)̅ = ⟨𝑓̅|𝑇|𝑃0⟩

𝐴̅(𝑓) = ⟨𝑓|𝑇|�̅�0⟩

𝐴̅(𝑓)̅ = ⟨𝑓̅|𝑇|�̅�0⟩

29 Eugene Paul Wigner (17 November 1902 – 1 January 1995)
30 Victor Frederick Weisskopf (19 September 1908 – 22 April 2002)
31 Sir William Rowan Hamilton (3 August 1805 – 2 September 1865)

76

In these cases, T is the transition operator and not the time reversal operator. We also

have the four decay rates, Γ𝑃0→𝑓 , Γ𝑃0→𝑓̅ , Γ�̅�0→𝑓 and Γ�̅�0→𝑓̅ . With these prerequisites at

hand we can understand the three kinds of CP violations.

CP violation in decay

It is also called tree-dominated CP violation, it happens when

Γ𝑃0→𝑓 ≠ Γ�̅�0→𝑓̅

which is the case if:

|
𝐴(𝑓)

�̅�(𝑓)̅
| ≠ 1

This happens for example in semileptonic decays, such as 𝐵0 → 𝐷−𝜇+𝜈_𝜇.

CP violation in mixing:

Here CP violation is done through loop-diagrams, like Penguin and box diagrams, it

happens in radiative, semileptonic decays 𝑏 → (𝑠, 𝑑)(𝛾, ℓ+ℓ−, 𝜈�̅�) and hadronic decays

such as 𝑏 → 𝑠�̅�𝑠, 𝑑�̅�𝑠, 𝑠�̅�𝑑. This happens when

𝑃𝑟𝑜𝑏(𝑃0 → �̅�0) ≠ 𝑃𝑟𝑜𝑏(�̅�0 → 𝑃0)

which occurs when:

|
𝑞

𝑝
| ≠ 1

This form of CP violation only occurs occasionally.

CP violation in interference

This happens during oscillation between particle and anti-particle or with 𝑏 → 𝑢�̅�𝑠, 𝑢�̅�𝑑

transitions. The defining relation is:

Γ (𝑃(↝�̅�0)
0 → 𝑓) ≠ Γ(�̅�(↝𝑃0)

0 → 𝑓)

This happens, only when the two mesons decay into a common eigenstate. This means

𝑓 = 𝑓,̅ which then implies:

𝐼𝑚(
𝑞𝐴�̅�
𝑝𝐴𝑓

) ≠ 0

One can think of a double slit experiment, where there are two possible paths to take:

77

↗ �̅�0 ↘
𝑃0 → 𝑓

Either 𝑃0 can directly decay into 𝑓 or first into the anti-P and then into 𝑓.

Observed CP violation in the following cases (91):

Table 8: Observed CP violation in B systems

violation in K0 K+ Λ D0 D+ D+
s Λ+

c B0 B+ B0
s Λ0

b

mixing ✓ - - ✗ - - - ✗ - ✗ -

decay ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

mixing/decay ✓ - - ✗ - - - ✓ - ✗ -

6.3 CKM and Triangles

6.3.1 CKM Matrix

The Cabibbo32–Kobayashi33–Maskawa34 (CKM) matrix is given (96) in the case of three

generations by:

(
𝑑
𝑠
𝑏
)

⏟
𝑚𝑎𝑠𝑠

𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

= (
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

) (
𝑑′

𝑠′

𝑏′
)

⏟
𝑒𝑙𝑒𝑐𝑡𝑟𝑜−𝑤𝑒𝑎𝑘
𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

The initial idea came from Cabibbo, but he came up with a two-by-two matrix and only

connected two of the three generations. Kobayashi and Maskawa extended the idea to

the three-by-three matrix we know today (92). It contains nine masses, three angles and

a complex phase. This very phase is responsible for CP violation (83), which we saw

already in A general approach to CP violation. Both, Kobayashi and Maskawa, won a

Nobel prize for their contribution to physics (1), Cabbibo was left out. (83)

We now want to figure out some characteristics of this matrix. The CKM matrix is

unitary, which means (93) (91):

32 Nicola Cabibbo (10 April 1935 – 16 August 2010)
33 Makoto Kobayashi (7 April Showa 19 – 23 July Reiwa 3)
34 Toshihide Maskawa (7 February Showa 15)

78

|𝑉𝑢𝑑|
2 + |𝑉𝑢𝑠|

2 + |𝑉𝑢𝑏|
2 = 1

|𝑉𝑐𝑑|
2 + |𝑉𝑐𝑠|

2 + |𝑉𝑐𝑏|
2 = 1

|𝑉𝑡𝑑|
2 + |𝑉𝑡𝑠|

2 + |𝑉𝑡𝑏|
2 = 1

|𝑉𝑢𝑑|
2 + |𝑉𝑐𝑑|

2 + |𝑉𝑡𝑑|
2 = 1

|𝑉𝑢𝑠|
2 + |𝑉𝑐𝑠|

2 + |𝑉𝑡𝑠|
2 = 1

|𝑉𝑢𝑏|
2 + |𝑉𝑐𝑏|

2 + |𝑉𝑡𝑏|
2 = 1

It is handy to reparametrize this matrix as a rotation matrix using cosine and sine with

three special angles (1, 2, 3) and a CP violating phase factor (). It is customary to

abbreviate some parts 𝑐𝑘 ≔ cos(θ𝑘) and 𝑠𝑘 ≔ si n(θ𝑘), then this matrix becomes (77):

(

𝑐1 −𝑠1𝑐3 −𝑠1𝑠3
𝑠1𝑐2 𝑐1𝑐2𝑐3 − 𝑠2𝑠3𝑒

𝑖𝛿 𝑐1𝑐2𝑠3 + 𝑠2𝑐3𝑒
𝑖𝛿

𝑠1𝑠2 𝑐1𝑠2𝑐3 + 𝑐2𝑠3𝑒
𝑖𝛿 𝑐1𝑠2𝑠3 − 𝑐2𝑐3𝑒

𝑖𝛿

)

This can be rewritten in terms of Euler35 angels 12, 23, 13 and a CP violating phase 13

(97) (83):

(

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿13

−𝑠13𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿13 𝑐12𝑐23 − 𝑠13𝑠23𝑠13𝑒

𝑖𝛿13 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒

𝑖𝛿13 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒
𝑖𝛿13 𝑐23𝑠13

)

If we now substitute 𝜆 = 𝑠12, 𝐴𝜆2 = 𝑠23 and 𝐴𝜆3(𝜌 − 𝑖𝜂) = 𝑠13𝑒−𝑖𝛿 we get the

Wolfenstein36 parametrization of the CKM matrix, which looks like the following (97)

(98) (83):

(

1 −
1

2
𝜆2 𝜆 𝐴𝜆3(𝜌 − 𝑖𝜂)

−𝜆 1 −
1

2
𝜆2 𝐴𝜆2

𝐴𝜆3(1 − 𝜌 − 𝑖𝜂) −𝐴𝜆2 1)

+ 𝒪(𝜆4)

35 Leonhard Euler (15 April 1707 – 18 September 1783)
36 Lincoln Wolfenstein (10 February 1923 – 27 March 2015)

79

This form is practical, since most data to date, with exception of sin(2𝜷), come from CP

conserving measurements (99). A b-quark decays most likely into a c-quark i.e.,

charmed decay, because of |𝑉𝑐𝑏|2 ≫ |𝑉𝑢𝑏|2 (100).

The values for each element of the CKM matrix are (83) (96):

𝑉𝐶𝐾𝑀 = (

|𝑉𝑢𝑑| |𝑉𝑢𝑠| |𝑉𝑢𝑏|

|𝑉𝑐𝑑| |𝑉𝑐𝑠| |𝑉𝑐𝑏|

|𝑉𝑡𝑑| |𝑉𝑡𝑠| |𝑉𝑡𝑏|
)

= (
0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.99911

) ± (
0.00010 0.00044 0.00012
0.00044 0.00011 0.00076
0.00024 0.00974 0.00003

)

A special role is played by the elements 𝑉𝑢𝑠, 𝑉𝑐𝑠 and 𝑉𝑢𝑏, they are involved in K and B

decays, through which CP violation is currently studied (96). The element 𝑉𝑢𝑏 contains

a complex phase and is therefore responsible for CP violation (93). It is this complex

phase which was hinted at in the section A general approach to CP violation.

6.3.2 The Unitary Triangle

There are six unitary triangles, that can be derivate from the CKM matrix (97) and they

can be written as following (83):

𝑉𝑢𝑑𝑉𝑢𝑠
∗ ⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑐𝑑𝑉𝑐𝑠
∗⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑡𝑑𝑉𝑡𝑠
∗⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆5

= 0

𝑉𝑢𝑑𝑉𝑢𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑐𝑑𝑉𝑐𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑑𝑉𝑡𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

= 0

𝑉𝑢𝑠𝑉𝑢𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆4

+ 𝑉𝑐𝑠𝑉𝑐𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

+ 𝑉𝑡𝑠𝑉𝑡𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

= 0

𝑉𝑢𝑠𝑉𝑐𝑠
∗⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑢𝑑𝑉𝑐𝑑
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑢𝑏𝑉𝑐𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

= 0

𝑉𝑡𝑏𝑉𝑢𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑑𝑉𝑢𝑑
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑠𝑉𝑢𝑠
∗⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

= 0

𝑉𝑐𝑑𝑉𝑡𝑑
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆4

+ 𝑉𝑐𝑠𝑉𝑡𝑠
∗⏟

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

+ 𝑉𝑐𝑏𝑉𝑡𝑏
∗

⏟
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

= 0

80

The canonical37 triangle is the second from the top, which is mainly investigated by the

Belle group (6). When people speak of the unitary triangle, they are talking about this

one. It is customary to normalize the baseline to one, a depiction of it can be seen in

Figure 36.

Figure 36: Unitary triangle (18)

The relation to the CKM matrix and the Wolfenstein parameters is given by these

equations:

𝑅𝑢 = |
𝑉𝑢𝑑𝑉𝑢𝑏

∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ | = √𝜌

2 + 𝜂2

𝑅𝑡 = |
𝑉𝑡𝑑𝑉𝑡𝑏

∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ | = √(1 − 𝜌)

2 + 𝜂2

and for the angles we have this easy relation:

𝛼 = 𝜃2 𝛽 = 𝜃1 𝛾 = 𝜃3

At Belle II we are measuring sin 2𝜃1 = sin 2𝛽 , one of the inner angles of the unitary

triangle, and the Wolfenstein parameter 𝜆 (11). The angle 𝛽 is a measure of CP violation

and if 𝜂 = 0 then there is no CP violation (93).

We can measure the angles:

sin 2𝛼 = −𝐼𝑚(
𝑉𝑡𝑑
∗ 𝑉𝑢𝑏

∗

𝑉𝑡𝑑𝑉𝑢𝑏
)

37 From Greek: κανών [kanon], meaning “straight measuring rod, ruler”.

81

an example is 𝐵𝑑0�̅�𝑑0 → 𝜋+𝜋−, but this is CKM suppressed. The other angle, which is also

CKM suppressed, can be measured by:

sin 2𝛾 = 𝐼𝑚(
𝑉𝑢𝑏
∗

𝑉𝑢𝑏
)

the example here is 𝐵𝑠0�̅�𝑠0 → 𝜌𝐾𝑠ℎ𝑜𝑟𝑡 . The third angle is CKM allowed:

sin 2𝛽 = 𝐼𝑚(
𝑉𝑡𝑑
∗

𝑉𝑡𝑑
)

an example decay is 𝐵𝑑0�̅�𝑑0 → 𝜓𝐾𝑠ℎ𝑜𝑟𝑡. (101)

Alternatively, they can be measured with (6):

𝜃1 = 𝜋 − arg (
−𝑉𝑡𝑑𝑉𝑡𝑏

∗

−𝑉𝑐𝑑𝑉𝑐𝑏
∗) = 𝛽

𝜃2 = arg (
𝑉𝑡𝑑𝑉𝑡𝑏

∗

−𝑉𝑢𝑑𝑉𝑢𝑏
∗) = 𝛾

𝜃3 = arg (
𝑉𝑢𝑑𝑉𝑢𝑏

∗

−𝑉𝑐𝑑𝑉𝑐𝑏
∗) = 𝛼

The angles 𝛼 and 𝛽 are harder to measure because of interference from so-called

penguin diagrams (95). We can measure these angles by the following decays (93):

𝛼: 𝐵0 → 𝜋𝜋, 𝜌𝜋

𝛽: 𝐵0 → 𝐽 ∕ 𝜓𝐾𝑠

𝛾: 𝐵0 → 𝐷𝐾

It is important to note here, that it is not sufficient to measure two angles and then

deduce the third one, measuring all three and seeing that they add up to 180 degree is

an essential test of the SM.

82

7 Analysis

Do. Or do not. There is no try.

Yoda

7.1 Methodology

Here I want to explain the method I used to find a suitable neural network for the task

at hand. I was not looking for the best neural network, because it is not feasible to run

this supposedly best network. By best network I mean the network, that will have a

Matthew Correlation Coefficient (MCC) of plus one in every category. Let alone of

finding the or one of the configurations which allow this result, this kind of network

will take enormous amounts of time to be trained. This leaves us with a suitable

network, which is optimal under the conditions, that one can find its parameters and

also train it in a reasonable time.

For a linear problem no hidden layer is needed and a simple input and output layer

will suffice (28) (47). According to (47) one or two hidden layers should be enough to

solve any problem in which neural networks can be applied. The size of each hidden

layer should be between the number of inputs and outputs to prevent over- or

underfitting (47). It has been empirically shown that deeper networks perform better

and are better at generalizing than wide networks; the issue that comes with deeper

networks is, that optimizing them will be harder (28). There is still no method to find

the optimal architecture of a neural network (102).

The Loss Function and the last Activation Function are dictated by the objective. In my

case it is a multiclass, single-label classification and thus requires crossentropy as a Loss

Function and on the last layer should be a softmax Activation Function (27). As for the

hidden layer, it is recommended to use tanh (32). Picking a not appropriate loss

function for the problem will lead to an alignment problem.

With this knowledge, I could start building the network. It is generally advised to

experiment around with the architecture, it is only important to pick one metric which

will be the measure of success (27). Then one has to create a baseline, with a very simple

network, against which all changes are measured (27).

83

All these tests ran on a smaller subset of the data of about 35%. I did some preliminary

tests on how much the amount of data affects the results and I ended up with 35%, since

this gave me a good balance of size and speed, which again allowed me to iterate faster

and test more setups. I only trained on Slow Pions and Beam Background at first, since

the goal of this work is to find Slow Poins against a larger background of other events.

Later I added the other data sets as standalone sets and as additional background.

7.2 Process

7.2.1 Finding an Optimizer

I started with finding an optimizer. For now, we will look at training and validation

loss curves, where we have on the x-axis the epoch and on the y-axis the error value as

calculated by the loss function. The first objective is to get smooth, hyperbolically

falling curves. When finding an optimizer, I used the same network architecture of

three layers with a width of 81, with ReLU as an activation function and a learning rate

of 𝜇 = 0.001, all tests were done with a batch size of 64 and ran for 100 epochs. For SGD

I used a momentum of 𝛾 = 0.15, Adam ran on the recommended parameters 𝛽1 = 0.9

and 𝛽2 = 0.999 and an 𝜖 = 1 × 10−8 .

In order to have a better understanding, while making the loss curves quantitively

comparable to other runs, I will use two numbers indicating the decay speed and

amount of oscillation exhibited by the curves. Assessing the oscillation is done by curve

fitting a rectangular hyperbola and taking the norm of the differences of the fit and the

loss curve. I will call this the oscillation value. The smaller this number, the less

oscillation a curve will have. The decay speed is characterized by a weighted mean of

the loss curve, with bias towards earlier epochs e.g., the first epochs are weighted

heavier than the later. The weights are distributed linearly. The smaller this number,

the faster the curve decays. I will call this number the baseline. Just for one or two

curves, these numbers will not make much sense, but as I start comparing with other

curves, they will become handy. Figure 37 shows how fitting two loss curves looks like.

On the left we see the baseline at 0.547 and this curve has an oscillation value of 0.004.

84

On the right the baseline is at 0.540, the baseline gap is 0.007 and its oscillation is valued

at 0.023. This oscillation is nearly two and a half times larger, than for the training

curve.

Figure 37: Illustration of Fitting the Loss Curves

One crucial point to understand here is that in order to have a good and generalizing

model both baselines for training and validation should be close to each other. A

validation baseline too low indicates, that the validation set is too small. A baseline too

high, as compared to training, shows us that the network cannot generalize or that it is

overfitting. (103) (104)

All test runs here are done for 100 epochs, because I wanted to keep them comparable

and I will do longer and shorter test runs later on. There is no prior way of knowing for

how long to train a network, but there are markers, that can tell us when to stop. The

validation loss curve, if it shows an uptick, will tell us when we should stop the training.

85

Figure 38: Test Runs for Optimizer

The loss curves for the optimizer test run are in Figure 38, on the left we see the training

loss and on the right the validation loss for each epoch. The actual loss curves are solid,

while the corresponding fit, on which the oscillation score is based, is plotted as dashed

line of the same color.

The results for these runs are tabulated in Table 9 and Figure 39 shows the same results

graphically, furthermore the confusion matrices for all four runs, on which the scores

are based, are given in Appendix A. What we see is, that the training loss for all four

runs are smooth, falling quickly and they all have a baseline around 0.52 and 0.55, with

AdaGrad having the highest value and Adam the lowest. All four loss curves have an

oscillation value below 0.1. The validation losses look only good for SGD and

AdaHessian, their validation baselines only differ about 0.06 points from the training

losses. This means, that the network did not over specialize on the dataset. Validation

loss curves for AdaHessian and SGD look good, their oscillation values are below 0.05.

AdaGrad, orange in Figure 38, is slowly falling. The baselines between training and

validation loss differ only for 0.002. The validation loss is oscillating strongly, still it has

a small oscillation value of 0.066. Adam was the worst performing optimizer in these

runs. The training loss has the lowest baseline and validation has the highest baseline.

This is still not the worst problem; it has by far the highest oscillation value.

Looking at accuracy, precision, Matthew Correlation Coefficient (MCC), the correctly

and wrongly labled Slow Poins in Figure 39, we see a similar trend to what the loss

86

curves already show. Adam achieves the lowest score in all, but in mislabels, the one

we want to minimize. AdaGrad is a little better with a MCC of 0.463 as compared to

Adams 0.433. SGD and AdaHessian performed comparably, with a MCC of 0.549 and

0.555 respectively. Ultimately, I decided against AdaHessian, because it more than

doubled the training time as compared to the other three, but at the very end of this

work I will get back to AdaHessian. From here onward I took Adam as my optimizer of

choice. My thinking here is, that this three-layer network is too simple and that it has

not enough parameters to adopt to the problem, as seen with Adams’s validation loss

curve. The training loss curve of Adam was the lowest, meaning it found a minimum

on the loss surface the fastest. Going forward, with this reasoning in mind, I kept using

Adam.

Table 9: Summary for Optimizer Test Runs

 SGD AdaGrad Adam AdaHessian

Training

Oscillation
0.004 0.002 0.002 0.004

Training

Baseline
0.547 0.551 0.523 0.54

Validation

Oscillation
0.023 0.065 0.17 0.045

Validation

Baseline
0.54 0.549 0.568 0.534

Baseline Gap 0.008 0.002 0.044 0.006

Accuracy 0.775 0.731 0.717 0.777

Precision 0.766 0.725 0.715 0.772

MCC 0.549 0.463 0.433 0.555

Labeled

Correctly
0.782 0.736 0.708 0.783

Mislabels 0.234 0.275 0.285 0.228

87

Figure 39: Summary for Optimizer Test Runs

7.2.2 Adjusting Learning Rate

In the next two runs, I tried to adjust the learning rate, in order to get Adam’s validation

loss to look smoother. In the last run, I used the same learning rate for all optimizers,

in order to be able to compare them, but it was obviously too large for Adam.

Figure 40: Adjusting the learning rate for Adam

The loss curves for the two tests are in Figure 40 and the summary with all scores are

in Table 10 and as always, the confusion matrices will be in the Appendix A, this time

together with the visual summary. We see that in both cases the baselines for training

88

and validation loss are much closer to each other, previously the difference was 0.045,

now it is 0.003 and 0.01, indicating, that the network could generalize better over the

data set. The oscillation value now is just one third for a learning rate of one tenth as

what we had before and it is even lower for a learning rate of one hundredth. The

validation loss curves are now falling hyperbolas with some peaks during later epochs.

Table 10: Summary for learning rate Test Runs

 Learning Rate = 0.0001 Learning Rate = 0.00001

Training Oscillation 0.002 0.002

Training Baseline 0.531 0.546

Validation Oscillation 0.063 0.041

Validation Baseline 0.528 0.536

Baseline Gap 0.003 0.01

Accuracy 0.778 0.778

Precision 0.773 0.764

MCC 0.556 0.557

Labeled Correctly 0.785 0.817

Mislabels 0.227 0.236

7.2.3 Regularization through Drop Rates

In order to get a handle on these peaks in the validation loss curve I started with

regularization. As I discussed earlier, there are methods to regularize over- and

underfitting. Since all batches are normalized by this network, I am left with L1-, L2-

regularization and dropout rates.

89

Figure 41: Regularization and Adding more Layer

We see the results in Figure 41 and the scores are in Table 11. I tested five setups with

three- and five-layers combined with a dropout rate of 25 and 50% and seven-layers

with 50% dropout rate. One striking result is, that the training loss baselines for 25%

fall together at around 0.56 and for 50% at around 0.6. The baselines for validation loss

for 25% are at 0.54 and for 50% at 0.557. The difference between the baselines for

training and validation is a bit smaller for 25% and for 50% the baseline distances are

at 0.046, which was the same as in the previous runs. All five curves have a hyperbolic

shape, which was achieved by lowering the learning rate, but we still have a higher

oscillation value. The seven-layer network has a similar shaped training loss curve as

the three- and five-layer setups. The validation loss lies quite a lot higher, with its

baseline at 0.634, 0.09 to 0.08 points higher as compared to the other four setups and

the validation losses baseline is also 0.017 points higher than the training loss baseline.

This leads to the conclusion that it generalized worse than the others.

Now looking at the scores in Table 11, we see, that the accuracy of all four setups come

close to each other, hovering around 77%. The precision is a bit higher for the five-layer

setups, but both the MCC and the number of all Slow Pions found, is lower for the five-

layer setups.

Judging from this, I should go with the three-layer 25% setup. It found nearly 80% of all

Slow Pions and it has the second best MCC, only being edged out by the three-layer 50%

setup. It has the lowest oscillation score and the baselines are the closest together. Still,

90

I chose the five-layer 50% setup, because it’s MCC was not far from that of the three-

layer 25% setup and it had fewer mislabels. The seven-layer setup had the fewest

mislabels, but I decide against for the reasons given above and additionally because it

has the lowest MCC. I will come back to this setup later again at the very end.

Table 11: Summary for Regularization

 Dropout

50%; 3

Layer

Dropout

25%; 3

Layer

Dropout

25%; 5

Layer

Dropout

50%; 5

Layer

Dropout

50%; 7

Layer

Training

Oscillation
0.004 0.003 0.004 0.005 0.007

Training

Baseline
0.599 0.566 0.565 0.603 0.617

Validation

Oscillation
0.045 0.034 0.116 0.054 0.05

Validation

Baseline
0.557 0.546 0.545 0.557 0.634

Baseline

Gap
0.042 0.02 0.02 0.046 0.016

Accuracy 0.778 0.773 0.773 0.767 0.702

Precision 0.765 0.766 0.774 0.794 0.838

MCC 0.557 0.547 0.546 0.536 0.443

Labeled

Correctly
0.795 0.784 0.761 0.72 0.512

Mislabels 0.235 0.234 0.226 0.206 0.162

7.2.4 Testing for Batch Size

Here I wanted to figure out, if increasing the batch size had any negative effects. Batch

sizes are chosen in accordance to base two in the range of 32 to 256 (28).

91

Figure 42: Different Batch Sizes

The loss curves are in Figure 42. The training losses all fall neatly together, with

oscillation values below 0.008 and baselines around 0.58, only batch size 256 has a bit

higher value. The higher baseline is due to the fact, that it falls slower. The validation

loss shows something similar, with baselines a bit lower at 0.55. The oscillation values

for batch size 64, 128 and 256 are all at 0.017, 0.011 and 0.006. Only batch size 32 had a

large value, it grew by a factor of 18, from 0.006 up to 0.112.

From Table 12 we see, that the accuracy is around 77%, so is the precision, except for

batch size 256. Batch sizes 32, 64 and 128 had similar number of mislabels of around

23% and a precision of 76.5%. All had a MCC of about 0.53 up to 0.54. Taking everything

together one finds, that batch size 64 and 128 performed comparably, with 128 being

nearly twice as fast. Going forward all runs will work with a batch size of 128.

Table 12: Summary for Batch Size Test Runs

 Batch Size 32 Batch Size 64 Batch Size 128 Batch Size 256

Training

Oscillation
0.006 0.006 0.006 0.007

Training

Baseline
0.583 0.584 0.584 0.591

Validation

Oscillation
0.112 0.017 0.011 0.006

92

Validation

Baseline
0.551 0.553 0.555 0.558

Baseline Gap 0.032 0.031 0.029 0.033

Accuracy 0.77 0.766 0.764 0.768

Precision 0.767 0.77 0.764 0.753

MCC 0.539 0.532 0.529 0.537

Labeled

Correctly
0.788 0.768 0.76 0.796

Mislabels 0.233 0.23 0.236 0.247

7.2.5 Convolutional Layer – Finding Kernel Size

In the next few sections I will be looking at different setups for convolutional networks

that are frontloaded to the linear layers. The objective for the test runs in this section

is to find a suitable kernel size. Given the image size there are only two possibilities.

PXD events are nine-by-nine matrices, as was discussed in PXD – Pixel detector, this

leaves us at a kernel size of either three or five.

Figure 43: Different Setups for first Convolution

Figure 43 are the loss curves for the first test runs for the convolutional network and

Figure 44 with Table 13 show the scores of these test runs. The training losses look good

for all runs, the baselines and oscillations can be taken from the aforementioned table.

The only striking thing, with zero padding and zero dropouts the training loss has a

93

much lower baseline. This means it can adapt to the training data better, but generally

this will lead to overfitting. As for the validation loss curves, all had a baseline between

0.544 and 0.56 and feeble oscillation, only with zero dropouts we got a bit bigger

oscillation. This means all setups with dropouts, regardless of padding or no padding,

could generalize well, if we only look at the loss curves.

If we want to use a kernel size of five, it is advisable to use padding, because all scores,

MCC, accuracy, precision, number of Slow Pions and mislabels, got improved. As for

kernel size three, in some instances padding improves the scores. MCC and accuracy

got better scores. With number of Slow Pions found we have a jump from 72% to 79%.

In other instances, padding reduces the score, the precision lowers from 78% down to

76% and the mislabels rise from 22% up to 24%.

Table 13: Summary for Finding a Kernel Size

 Kernel

Size 3;

Dropout

0%;

Padding 0

Kernel

Size 3;

Dropout

50%;

Padding 0

Kernel

Size 3;

Dropout

50%;

Padding 1

Kernel

Size 5;

Dropout

0%;

Padding 0

Kernel

Size 5;

Dropout

50%;

Padding 0

Kernel

Size 5;

Dropout

50%;

Padding 1

Training

Oscillation
0.003 0.005 0.007 0.003 0.005 0.004

Training

Baseline
0.553 0.6 0.602 0.553 0.626 0.596

Validation

Oscillation
0.039 0.029 0.01 0.01 0.014 0.007

Validation

Baseline
0.547 0.554 0.556 0.548 0.587 0.553

Baseline

Gap
0.006 0.046 0.046 0.005 0.038 0.044

Accuracy 0.769 0.765 0.773 0.771 0.758 0.772

Precision 0.787 0.779 0.759 0.754 0.749 0.767

94

MCC 0.538 0.53 0.547 0.543 0.516 0.543

Labeled

Correctly
0.751 0.719 0.792 0.803 0.79 0.803

Mislabels 0.213 0.221 0.241 0.246 0.251 0.233

Figure 44: Summary for Finding a Kernel Size

Figure 44 shows the scores in form of a bar chart. Here we see again, that the MCC for

the five setups are all above 0.51, but below 0.55, thus all performed similarly. The same

goes for accuracy, which is in the upper mid-seventies. If we want to minimize

mislabels, then we should go with the blue chart. It has the highest precision and found

even more Slow Pions, then the second-best performer in terms of mislabels. As I said,

the blue setup is not viable, because the gap between training and validation loss are

too big. Hence, we should use the orange setup.

7.2.6 Convolutional Layer – Finding a Channel Width

The next step was to find how many convolutional layers should be used. It makes

again sense to think about an upper bound based on the input data. Every convolution

95

shrinks or compresses the image and thus it loses some information. This means that

at most three convolutional layers make sense and one should rather increase the

amounts of channels. Taking the formular for calculating the output image size after a

single convolution, as was given in the section Convolutional layer, we can calculate:

𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 3:
𝑛𝑖𝑛 + 2 ⋅ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1 =

9 + 2 ⋅ 0 − 3

1
+ 1 = 7 → 49

𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 5:
9 − 5

1
+ 1 = 5 → 25

So, we see, if we use zero padding, we lose 32 pixels per convolution with kernel size

three and 56 with kernel size five. Thus, is makes only sense to use at most three layers,

since padding can only mitigate this loss of pixels and not solve the issue. As for the

question of how many channels, I will get back to this question in this section.

Figure 45: First Test Runs for Amount of Channels

All test runs in this section ran with kernel size three and zero padding on the first

convolutional layer, otherwise the image would lose too many pixels after the second

layer. The loss curves are in Figure 45. The summaries are in Table 14 and Figure 46.

Generally, we see again the pattern, that zero dropout has lower baselines, but in all

six cases the oscillations are around the same values as we have seen in previous

sections. As for the scores, accuracy and precision are in all cases in the upper

seventies. There is a pattern of finding more Slow Pions, but making more mistakes. It

showed up earlier already and will continue to show up. Also judging from Figure 46

all setups performed comparably, thus it makes sense to go forward with just three

96

channels, since using five or seven channels did not improve the results much, while

increasing the calculation time slightly.

Another observation is, that the curves for three, five, seven and nine channels with

50% have successively lower final loss values in both training and validation.

If we look at three channels vs. just one channel, we already see, that the amount of

mislabels increased, but at the same time also the number of Slow Pions found

increased by the same amount. Furthermore accuracy rose, while precision fell about

the same amount. In other words, we are left with balancing between finding more of

what we want, while increasing our error rate or reducing the error rate with losing

out on valuable data. Put another way we have to decide between quantity of data and

purity of data, while having less to work with for future analyses. This is the pattern I

already alluded to in earlier sections.

Table 14: Summary for first Channels Test Runs

 3

Channels;

0%

Dropout

5

Channels;

0%

Dropout

5

Channels;

50%

Dropout

5

Channels;

50%

Dropout

7

Channels;

50%

Dropout

9

Channels;

50%

Dropout

Training

Oscillation
0.002 0.001 0.004 0.005 0.004 0.005

Training

Baseline
0.531 0.528 0.59 0.583 0.579 0.576

Validation

Oscillation
0.006 0.006 0.006 0.007 0.006 0.008

Validation

Baseline
0.527 0.528 0.548 0.54 0.536 0.533

Baseline

Gap
0.004 0.0 0.042 0.042 0.043 0.044

Accuracy 0.78 0.78 0.772 0.774 0.778 0.778

Precision 0.763 0.767 0.754 0.755 0.758 0.774

97

MCC 0.561 0.56 0.546 0.549 0.556 0.555

Labeled

Correctly
0.816 0.804 0.812 0.813 0.802 0.798

Mislabels 0.237 0.233 0.246 0.245 0.242 0.226

Figure 46: Summary for first Channels Test Runs

Judging from Figure 46, the introduction of evermore channels only marginally

improves the performance of the network. In the charts we see, that precision and

accuracy stay in the upper seventy percent and that MCC for all five runs is in roughly

0.55 and the mislabels are in the lower twenties. The runs with seven and nine channels

ran roughly 40% to 60% longer than compared to the runs with three channels.

7.2.7 Convolutional Layer – How many Convolutions?

As I already mentioned it does not make sense to go beyond three convolutions,

because then nothing is left of the original image. In this section I will compare two- to

three-layers with just three and five channels and a kernel size of three. Furthermore,

I will compare 50% dropout rate to 0% dropout rate in the linear layers of this network.

This means there are eight different setups to this network.

98

Figure 47: First Test Runs for Number of Convolutions

Figure 47 shows the loss curves and we see the usual, the training baselines for the zero

dropout runs at around 0.53, while for the runs with 50% dropout close to 0.6. The

validation baselines are at 0.53 for the zero dropouts and at 0.55 for those with

dropouts. In all eight cases the oscillation values are below 0.03, which means the runs

were good. These numbers were all taken from the summaries in Table 15 and Table

16.

Table 15: Summary for Number of Convolutions Test Runs, First Part

 3 3 Channels;

0% Dropout

3 3 Channels;

50% Dropout

5 5 Channels;

0% Dropout

5 5 Channels;

50% Dropout

Training

Oscillation
0.001 0.014 0.001 0.005

Training

Baseline
0.529 0.599 0.527 0.587

Validation

Oscillation
0.004 0.026 0.005 0.015

Validation

Baseline
0.527 0.555 0.526 0.542

Baseline Gap 0.002 0.044 0.001 0.045

Accuracy 0.781 0.773 0.782 0.777

99

Precision 0.776 0.778 0.767 0.759

MCC 0.561 0.547 0.564 0.554

Labeled

Correctly
0.806 0.775 0.811 0.803

Mislabels 0.224 0.222 0.233 0.241

Table 16: Summary for Number of Convolutions Test Runs, Second Part

 3 3 3 Channels;

0% Dropout

3 3 3 Channels;

50% Dropout

5 5 5 Channels;

0% Dropout

5 5 5 Channels;

50% Dropout

Training

Oscillation
0.002 0.009 0.001 0.004

Training

Baseline
0.532 0.597 0.526 0.588

Validation

Oscillation
0.005 0.016 0.005 0.016

Validation

Baseline
0.531 0.555 0.527 0.56

Baseline Gap 0.001 0.043 0.001 0.028

Accuracy 0.777 0.771 0.779 0.762

Precision 0.762 0.79 0.755 0.815

MCC 0.555 0.542 0.56 0.531

Labeled

Correctly
0.797 0.737 0.805 0.697

Mislabels 0.238 0.21 0.245 0.185

Figure 48 shows the same pattern, that I mention with every test run, the higher the

precision, the lower the number of mislabels, but this inevitably leads to lower total

number of Slow Pions found. If we compare now two to one convolution, we see that

there is not much of a difference in performance. One convolution yields a MCC of 0.54

to 0.56 and two 0.53 to 0.555. With just one-layer dropouts increase the number of

mislabels slightly from 23.5% to 24.5%, while the total number of Slow Pions remained

100

stable at around 81%. With two layers there is no correlation between dropouts or no

dropouts, we see the number of mislabels stays roughly between 22% and 24% and

total number of Slow Pions is around 80%.

Something happens when using three layers. The two runs with zero dropouts are

similar to the other six runs from this section and five runs from the previous section.

They have a MCC of about 0.56 and mislabels of around 24% with total number of Slow

Pions of 80%. With 50% dropout rate in the linear layers, we lose about 1% in accuracy,

but we gain 3% to nearly 5% in precision and thus the mislabels fall to 21% for three

channels and 18.5% for 5 channels. Interestingly enough the MCC falls a bit, down to

0.54 for three channels and 0.53 for five channels.

Figure 48: Summary for Number of Convolutions Test Runs

7.2.8 Transposed Convolutional Layer

Earlier we calculated, that given an image size of nine-by-nine pixels, it does not make

much sense to go beyond three convolutions. There are possible remedies to this, one

was padding, but this, as was already said, only offsets the loss of information. The

other is using transposed convolutions, they were already discussed in Transposed

101

Convolutional Layer. One can think of something like up sampling an image, with the

added benefit of having learnable parameters. This comes with its own caveats, like

having more parameters, makes finding a minimum on the loss surface harder. I tested

a simple three-layer, three channels setup and five linear layers with 50% dropout

rates. I did four runs, one without a transposed layer and then three with a transposed

layer at each possible point.

Figure 49: Loss curves for Transposed Convolutional Layer

Figure 49 shows the loss curve for the transposed convolution test runs. There is not

much to say. They all have a baseline of around 0.6 for the training loss and 0.55 for the

validation loss and an oscillation value below 0.02.

The accuracy for all of them is at 77% and it is the highest for the second layer

convolution. The precision is a bit more fluctuating; the second layer is the highest of

the networks with a transposed layer, with 78% and only the pure convolutional

network is better here with 79%. Conversely, the pure convolutional network has the

fewest mislabels and the network with the highest mislabels found the most Slow Pions.

The accuracy and precision of a two-layer, three channels convolution is at 77% and

78% and 22% of mislabels. This means a transposed convolution brings neither an

improvement over a three layer nor a two-layer setup.

102

Table 17: Summary for the Transposed Convolutional Test Runs

 No Transposed

Layer

Transposed on

First Layer

Transposed on

Second Layer

Transposed on

Third Layer

Training

Oscillation
0.009 0.007 0.012 0.011

Training

Baseline
0.597 0.595 0.594 0.601

Validation

Oscillation
0.016 0.016 0.018 0.016

Validation

Baseline
0.555 0.551 0.55 0.56

Baseline Gap 0.043 0.044 0.044 0.041

Accuracy 0.771 0.774 0.775 0.771

Precision 0.79 0.744 0.78 0.768

MCC 0.542 0.552 0.549 0.541

Labeled

Correctly
0.737 0.822 0.765 0.767

Mislabels 0.21 0.256 0.22 0.232

The graphical summary is seen in Figure 50. Most notably is that the network without

and transposed convolutional layer has the fewest number of mislabels and the

network with a transposed layer as the first layer had the most mislabels, found the

most Slow Pions, but had the lowest precision and the highest MCC.

103

Figure 50: Summary for the Transposed Convolutional Test Runs

7.2.9 Learning Rate Schedulers

The next few tests will be less than exhaustive and there is a far larger range of

experiments possible. This is probably true for most tests I made here, especially for

the optimizers, but with learning rate schedulers I have a wide range of choices and

parameters for each scheduler, plus I can combine several schedulers. In this sense I

understand these tests only as a survey into learning rate scheduler.

In this and the immediately following sections I used a network with five linear layers,

like with all convolutional test runs, with a dropout rate of 50% and one convolution

with three channels and a kernel size of three. I used ReLU as activation function

throughout all tests so far.

104

Figure 51: Loss Curves and Learning Rate for Scheduler Tests

Figure 51 shows the loss curves for different learning rate scheduler, on the left are the

training losses, in the middle are validation losses and on the right are the different

learning rates. So far this was not necessary, because I employed flat learning rates.

The first thing that one notices in the loss curves is, that the green curve, an exponential

decay by 20%, the loss levels out early. This essentially means, that the network stopped

learning. I will exclude this run from my further analysis, but I wanted to keep it, in

order to illustrate this point. Looking at Figure 51 we see on the left, that the

MultiStepper falls the fastest and indeed it has the lowest baseline of 0.584 and the

lowest oscillation value at 0.001, the cyclical schedulers have stronger oscillations and

higher baselines at 0.013 and 0.037.

Comparing training and validation baselines reveal a gap of about 0.04. With 0.048 at

the high end is the Exponential scheduler and 0.034 at the low end is the MultiStepper.

For validation oscillation the MultiStepper has the strongest at 0.062, but this probably

due to the peaks after epoch 60. These peaks could be fixed through one additional step,

but the step height would need to be adjusted, otherwise we will get the same issue,

which we already have with the green curve.

One sees, that the MultiSteppers Training loss has a steep fall until epoch 12, this is

where the learning rate decays for the first time. Like the green curves, the

MultiSteppers loss bottoms out and remains flat.

The fewest mislabels were achieved by the Single Cycle scheduler with just 21.4% and

the highest got the Exponential with 24.5%. We see again, that the fewer mislabels, the

fewer Slow Pions in total, with exception of the MultiStepper, which came close in

105

mislabels to the Single Cycle scheduler, but the number of Slow Pions correctly tagged

correlated negatively with mislabels.

Table 18: Summary for Learning Rate Scheduler

5 Cycles Single Cycle

Exponential

γ= 0.8

Exponential

γ = 0.99

Multi Step

γ = 0.50

Training

Oscillation
0.013 0.037 0.004 0.006 0.001

Training

Baseline
0.614 0.602 0.654 0.609 0.584

Validation

Oscillation
0.017 0.042 0.012 0.014 0.062

Validation

Baseline
0.567 0.559 0.626 0.561 0.55

Baseline

Gap
0.047 0.043 0.029 0.048 0.034

Accuracy 0.775 0.772 0.673 0.769 0.743

Precision 0.764 0.786 0.742 0.755 0.784

MCC 0.55 0.545 0.362 0.54 0.49

Labeled

Correctly
0.782 0.762 0.536 0.791 0.671

Mislabels 0.236 0.214 0.258 0.245 0.216

106

Figure 52: Summary for Learning Rate Scheduler

It is instructive to not just look at number, but also at a visual presentation, Figure 52

shows this. Here the Exponential scheduler with a decay of about 20% per epoch, the

green bar, is obviously the worst performer. In every score it is falling far behind.

Another thing becomes pretty clear, the MultiStepper found a lot less Slow Pions, than

the rest. Looking at the learning rate over time on the right in Figure 51 I think it

becomes obvious, that the MultiSteppers learning rate fell to fast and that could be one

reason, why it found less Slow Pions, than the others.

The conclusion one can draw from these test runs is, that the learning rate not only has

an upper bound, but also a lower bound, below which a network stops working. And

the last point is, that the decay speed of the learning rate is of utmost importance.

7.2.10 Activation Functions

In this section I tested different activation functions, I refer to Activation Functions in

order not to plot them here again. I tested ReLU, LeakyReLU, Sigmoid, Softplus and

Tangent Hyperbolic. There are a few more, but these are sufficiently different from one

another, that made them of interest, just to cover a wider ground.

107

Figure 53: Loss Curve for Activator Test Runs

The loss curves are in Figure 53, the training losses for all five curves have a small

oscillation value with ReLU having the highest at 0.015 and Tangent Hyperbolic the

lowest at 0.005. The baselines are all between 0.588 and 0.601, with Tangend Hyperbolic

having the smallest and LeakyReLU the highest.

With validation loss it is similar, the oscillation is the smallest with ReLU at 0.013 and

the highest with Sigmoid. The lowest Baselines have Tangent Hyperbolic and ReLU

together at 0.542 and the highest has Softplus and thus the gaps between the training

and validation loss baselines are between 0.051 for LeakyReLU and 0.016 for Softplus.

The accuracies are all at 77% give or take, only Softplus is worse at 72.5%. With

precision it is again the other way around, Softplus has the highest at 78% and ReLU

the lowest at 76%.

Table 19: Summary for Activation Test Runs

ReLU LeakyReLU Sigmoid Softplus

Tanget

Hyperbolic

Training

Oscillation
0.015 0.011 0.007 0.011 0.005

Training

Baseline
0.589 0.601 0.593 0.592 0.588

108

Validation

Oscillation
0.013 0.015 0.064 0.055 0.037

Validation

Baseline
0.542 0.55 0.568 0.576 0.542

Baseline

Gap
0.047 0.05 0.025 0.016 0.045

Accuracy 0.779 0.774 0.771 0.725 0.77

Precision 0.762 0.766 0.777 0.781 0.769

MCC 0.559 0.548 0.543 0.459 0.54

Labeled

Correctly
0.798 0.794 0.75 0.629 0.774

Mislabels 0.238 0.234 0.223 0.219 0.231

Figure 54 shows the results visually and one notices, that all five, but Softplus,

performed similarly. Softplus has by far the lowest MCC and found nearly only 60% of

all Slow Pions. It is barely the best performer for mislabels. The conclusion of this test

can only be, that four out of five activation functions worked well and that Softplus

should remain only as the activation function for the very last layer, as it was discussed

in Methodology.

109

Figure 54: Summary for Activation Test Runs

7.3 Results

誰にも運命はかえられないだが、ただ待つかみずからおもむくかは決められる。

ヒイサマ

In the previous section I presented different test runs to figure out which network

would be suitable for the purposes of finding Slow Pions. The results were, that the

simplest network will suffice or at least, that bigger networks will not improve the

results substantially. My approach to this now is to run the baseline network, the

smallest network with a single convolutional layer and the biggest network

configuration from the previous section, for 25, 50, 100, 150 and 200 epochs. They all

ran with Adam as the optimizer and a 5 cycles learning rate scheduler. The network

configurations are in Table 20: Network Setups. Unlike the previous tests, I ran these

tests with Slow Pions against all other categories, as they were discussed in Simulated

data, combined into one. Then I will compare the results and take training and

validation time into account in assessing the viability of the bigger network.

110

Table 20: Network Setups

Network Small Network Medium Network Large Network

Convolutional

Layer
0 1 3

Output Channels - 3 5

Kernel Size - 3 3

Padding - 1 1

Transposed

Convolution
- -

no transposed

convolution

Activation Function - ReLU ReLU

Linear Layer 5 5 5

Layer Width 81 243 405

Dropout Rate 50% 50% 50%

Activation Function ReLU ReLU ReLU

7.3.1 Long-Term Tests

The first network I ran was the Small Network, see Table 20, the loss curves as in Figure

55 and the scores are summarized in Table 21 and in Figure 56.

Figure 55: Loss Curve for Small Network

The training loss curve for the Small Network level all out at around 0.59, but the

baselines for the shorter runs lay a bit higher, for 25 epochs it is at 0.602 and there

111

seems to be a convergence between 150 and 200 epochs at 0.587. There is nothing to

say about the training oscillations, which are low for all five runs at 0.001 and 0.003 in

case of 200 epochs.

The validation baselines lay around 0.55, give or take and thus the gap is about 0.04, 25

and 50 epochs runs lay bit higher. Only the gap for 200 epochs is smaller with 0.034.

The oscillation values are equal or smaller than 0.012 up to 100 epochs. Then there is a

jump at 150 epochs to 0.04, which is still acceptable and due to the peaks. This could be

solved by tweaking the learning rate. The 200 epochs run has the strongest oscillations

with 0.186. This is probably due to the cyclical learning rate scheduler, which

maintained five cycles and I should probably adjust it, but I wanted to keep it

comparable to the two other setups, which I have tested in this section.

Table 21: Summary for Small Network

 Small

Network for

25 Epochs

Small

Network for

50 Epochs

Small

Network for

100 Epochs

Small

Network for

150 Epochs

Small

Network for

200 Epochs

Training

Oscillation
0.001 0.002 0.002 0.002 0.003

Training

Baseline
0.602 0.595 0.589 0.587 0.587

Validation

Oscillation
0.007 0.007 0.012 0.04 0.186

Validation

Baseline
0.559 0.551 0.547 0.548 0.553

Baseline

Gap
0.043 0.044 0.042 0.04 0.034

Accuracy 0.76 0.762 0.765 0.764 0.758

Precision 0.741 0.748 0.74 0.742 0.752

MCC 0.522 0.526 0.533 0.53 0.515

112

Labeled

Correctly
0.8 0.788 0.834 0.804 0.749

Mislabels 0.259 0.252 0.26 0.258 0.248

Figure 56: Summary for Small Network

The scores are graphically summarized in Figure 56. All five runs had similar scores

for accuracy and precision, both are in the mid-seventies, all MCCs are above 0.5 and

no run falls below 20% or above 30% mislabels. Interesting is only that the 100 epochs

run found above 83% of all Slow Pions and is thus 3% points ahead of the others.

113

Figure 57: Loss Curves for Medium Network

Figure 57 shows the results for the Medium Network and the scores are summarized

in Table 22. Only the validation curve for 200 epochs exhibits some peaks, which occur

past epoch 100. The oscillation values for training loss are all less or equal to 0.002 and

the baselines are near 0.58 with a low point for 150 epochs. The validation loss curves

have oscillation values less or equal to 0.012, with the exception of the 200 epochs run.

There the oscillation is 0.054, this is due to the aforementioned peaks. The baseline gap

is relatively constant with 0.038.

Table 22: Summary for Medium Network

 Medium

Network for

25 Epochs

Medium

Network for

50 Epochs

Medium

Network for

100 Epochs

Medium

Network for

150 Epochs

Medium

Network for

200 Epochs

Training

Oscillation
0.001 0.001 0.001 0.002 0.002

Training

Baseline
0.587 0.583 0.582 0.578 0.58

Validation

Oscillation
0.012 0.008 0.009 0.012 0.054

Validation

Baseline
0.549 0.543 0.543 0.54 0.542

114

Baseline

Gap
0.038 0.04 0.038 0.038 0.038

Accuracy 0.763 0.762 0.761 0.767 0.764

Precision 0.756 0.758 0.751 0.754 0.737

MCC 0.526 0.524 0.521 0.534 0.531

Labeled

Correctly
0.77 0.775 0.76 0.798 0.813

Mislabels 0.244 0.242 0.249 0.246 0.263

Figure 58: Summary for Medium Network

Figure 58 shows the visual representation of the scores for the Medium Network. All

scores again fall to in the ballpark and they are similar to what we had before. The

accuracy and precision are again in the mid-seventies. Generally, the Medium Network

got lower scores for number of Slow Pions found, with an uptick for longer training

time. It had slightly less mislabelled, with the exception for the 200 epochs run.

Whereas the Small Network got around 25% mislabels, the Medium Network gained

half a percentage.

115

Figure 59: Loss Curves for Large Network

We are coming finally to the Large Network. Its loss curves are in Figure 59 and the

scores are summarized in Table 23. Now all oscillations for training loss are equal to or

less than 0.004 and the baselines are again at 0.580, with a convergence toward 0.577

for 150 epochs. The validation loss has an oscillation value of 0.006 or less, which is so

far the best scores and a baseline at 0.54 with a convergence toward 0.537 for 150

epochs. The baseline gaps stay constant at 0.04.

The accuracy increases with more epochs, starting at 76.3% with 25 epochs and ending

at 76.7% for 150 and 200 epochs. The precision declines from 76.1% for 25 epochs down

to 74.7% for 200 epochs. The number of Slow Pions found and the mislabels increases

from 77.7% and 23.9% for 25 epochs up to 81.1% and 25.3% for 200 epochs.

Table 23: Summary for Large Network

 Large

Network for

25 Epochs

Large

Network for

50 Epochs

Large

Network for

100 Epochs

Large

Network for

150 Epochs

Large

Network for

200 Epochs

Training

Oscillation
0.001 0.001 0.002 0.002 0.002

Training

Baseline
0.582 0.58 0.578 0.577 0.577

116

Validation

Oscillation
0.002 0.004 0.005 0.006 0.005

Validation

Baseline
0.544 0.542 0.539 0.537 0.537

Baseline

Gap
0.038 0.037 0.039 0.04 0.04

Accuracy 0.763 0.765 0.765 0.767 0.767

Precision 0.761 0.754 0.754 0.748 0.747

MCC 0.526 0.531 0.531 0.536 0.535

Labeled

Correctly
0.777 0.802 0.798 0.807 0.811

Mislabels 0.239 0.246 0.246 0.252 0.253

Figure 60: Summary for Large Network

Figure 60 confirms what I have descripted so far. There is a slight uptick in accuracy,

MCC, amounts of Slow Pions found and mislabels with an increase in training time and

a drop in precision. Overall, the scores are similar.

117

7.3.2 Tests against Single Particles

Now with previous results at hand, I want to look into how the network can

differentiate between Slow Pions and specific other particles. This should give some

insight into which events can make problems and from which particles should stem

the most mislabels and against which the network losses most Slow Pions.

The long-term tests were done with every category combined into one against Slow

Pions. Here I will pick one event at a time and compare it against slow pions. I will

keep balanced training sets, meaning, that both categories will be at the same size, but

I will utilize the biggest possible set per category. I will test the following:

• Anti-Deuterons (DD)

• Protons (PP)

• Pions (PI)

• Kaon (KK)

• Muon (MM)

• Electrons (EL)

• Beam Background (BB)

• and Gammas (GA)

The second last category was tested already in the section Process in order to build up

this network. The last category will not be very representative, since there are not

many gamma events, as is shown in Figure 16 in section Simulated data.

The tests in this section will use the Large Network, its configuration is in Table 20. I

concluded from the last section, that this network will have highest capability to

generalize over the data sets. Determining from the last section I will use 150 epochs,

since 200 epochs ran 25% longer, but did not improve a networks performance

sufficiently. I plotted the training results from the long-term tests according to number

of epochs, comparing network sizes. These plots will be in the Appendix A. They show

again, that 150 epochs gave the best performance and that the Large Network could

generalize the best.

118

Figure 61: Loss Curves for the Single Particle Tests

As I already mentioned, here I tested the performance against individual particles in

order to find out where the network fails. This is assuming a level of independence for

identifying these particles. Figure 61 shows the loss curves for these test runs and Table

24 summarizes the results.

The size of the data set for gammas is 1.5% of others, this makes it not a viable option

for a comparison to the others. Its loss curve can be seen in grey in Figure 61. This is

why I will ignore it for now.

The training oscillations are equal or less than 0.004, the biggest oscillations happened

with Beam Background. Validation oscillations are a tad bit larger, but stay below 0.016,

this value was achieved against electrons.

The baselines, training and validation, have a large spread. In both cases the sequence

is the same, the highest are the Anti-Deuterons baselines at 0.644 and 0.626 with the

smallest gap with 0.018. This shows good generalization, but looking at the scores

shows, that the Anti-Deuterons show the highest mislabels score of nearly 35% and the

smallest number of Slow Pions at 66%. This run has also one of the lowest MCCs of this

work with a score of 0.283, showing a weak correlation.

The next baselines are for Protons at 0.589 and 0.556 with a gap of 0.033. Again, this

would imply good generalization, but here we have the second worst scores for

mislabels and number of Slow Pions at 26.3% and 77.6%. Here the MCC is 0.484, which

is more in line of what we have seen so far.

119

Beam Background has the next baselines at 0.567 and 0.523 with a gap of 0.044, this is

close to the gaps of the other particle test runs. It is the third worst in mislabels and

number of Slow Pions found with 23.1% and 79%. This is right in between the results

for Anti-Deuterons and Protons and the remaining particles. Beam Background

achieved a MCC of 0.567, which is a stronger correlation than what we had in the long-

term tests.

The remaining particles, Pions, Kaons, Electrons and Muons, have training baselines

between 0.539 and 0.546, with Muons having the lowest. Their validation baselines are

in the range of 0.498 and 0.486, again with Muons being the lowest. The gaps are around

0.05, with Muons having the biggest gap. In all cases the amount of mislabels was below

20%. Pions had the most mislabels at 19.9% and Muons the fewest at 18.4%. The number

of Slow Pions exceeded 82% in these four cases. This together gave MCCs of more than

0.62, showing stronger correlations than any other run so far.

Table 24: Summary for the Single Particle Tests

 DD PP PI KK MM EL BB GA

Training

Oscillation
0.002 0.003 0.002 0.003 0.003 0.003 0.004 0.017

Training

Baseline
0.644 0.589 0.544 0.546 0.539 0.543 0.567 0.644

Validation

Oscillation
0.003 0.007 0.01 0.012 0.011 0.016 0.008 0.02

Validation

Baseline
0.626 0.556 0.494 0.498 0.486 0.494 0.523 0.62

Baseline

Gap
0.018 0.033 0.05 0.049 0.053 0.049 0.044 0.025

Accuracy 0.642 0.742 0.816 0.812 0.827 0.818 0.784 0.67

Precision 0.652 0.737 0.801 0.813 0.816 0.804 0.769 0.657

MCC 0.283 0.484 0.632 0.624 0.655 0.636 0.567 0.34

120

Labeled

Correctly
0.66 0.776 0.833 0.823 0.842 0.829 0.79 0.747

Mislabels 0.348 0.263 0.199 0.187 0.184 0.196 0.231 0.343

Figure 62: Summary for the Single Particle Tests

Figure 62 shows the graphical representation of the summary from Table 24. From the

charts and what we discussed above, we can deduce, that the network has minor issues

with the lighter particles, such as Mesons and Leptons. Anti-Deuterons are clearly out

of line with the other particles, except for gammas. It has the lowest accuracy, precision

and MCC, found the fewest Slow Pions and has the most mislabels. Less pronounced,

but still clearly visible is the performance for protons. Beam Background falls close to

protons, assessing it purely visually, so I can assume, that the network is also struggling

with it. In the previous section the MCC of the Large Network for 150 epochs was at

0.536. The mean value of MCCs from these runs is 0.554, if I include gammas, then the

MCC falls down to 0.528. The score for the previous falls right between these two.

121

7.3.3 Multiclass Tests

Figure 63: Loss Curves for Multiclass Test Run

Figure 63 shows the loss curves for a multiclass test run. I tested the same categories as

I descripted above, but this time all at the same time. The baselines here are at 2.018

for training and 1.982 for validation loss and it has a baseline gap of 0.036. The training

loss has an oscillation of 0.002 and the validation has 0.006.

Figure 64: Loss Curves for Binary Test Runs

Figure 64 shows the loss curves for the Large Network for 150 epochs in blue and in

orange we see the averaged curves for the individual particle tests from the most recent

section. The baselines for the binary test are at 0.577 and 0.537 with a gap of 0.04 and

the averaged baselines for the individual particles are at 0.568 and 0.525 with a gap of

0.042. While the baselines are not directly comparable to that of the multiclass test run,

122

the gap can be compared, as it is a difference to be minimized. The gaps for the

multiclass run is at 0.036. The gap for the binary run and the average gap for individual

particle runs are at around 0.04. The oscillation values are the same as for the

multiclass test. Since the loss value scales with number of categories we can compare

the multiclass run, with the individual runs and the binary run, but factoring out the

number of classes. In order to keep it comparable to the other runs, which were all

binary, I will factor out only the multiclass run. This gives us a training baseline at 0.505

and a validation baseline at 0.496. The difference to the binary class and the averaged

individual classes are smaller than 0.08 and 0.05 points for training and validation

baselines, respectively. Thus, concluding from the loss curves alone the network could

handle the multiclass test well.

Figure 65: Confusion Matrix for Muliclass Test Run

123

Each category made up one eighth of the full data set, this means 12.5% should be the

goal of in each category. We see in Figure 65 the confusion matrix for the multiclass

test run. I am talking about the diagonal elements of the matrix. For Slow Pions there

is a score of 5.93%, this is less than half of the ideal score. The MCC for Slow Pions is

0.33, which is indicates a weak correlation.

Protons and Pions are below 1% and their MCC, taken from Figure 70, show that the

network was struggling and was more or less guessing randomly. Not many Pions or

Protons were guessed to be Slow Pions.

Anti-Deuterons is at 4.18%, that is one third of what would have been perfect and the

MCC is 0.18, indication a weak correlation. 3.34% of all Anti-Deuterons were guessed to

be Slow Pions, this fits well with the results from the previous section for Anti-

Deuterons

Beam Background is the second best at 5.85%, this is less than half of what it should be.

Most wrongly labeled Beam Background events were assigned to be Slow Pions. It has

the best MCC of 0.42.

The whole line for Kaons is just zero, this means, that noting was guessed to be a Kaons.

This gave us the best accuracy at 87%, since most events are not Kaons, but the

precision was the lowest at 0%. I cannot tell what happened here.

Electrons were guessed to be anything, but the fewest guessed to be Slow Pions. For

Muons we have a similar picture, also here were the fewest guesses for Slow Pions.

That is why their MCCs were close to zero, but it still fits in with the individual tests

from the previous section.

124

Figure 66: Compressed Confusion Matrix for Binary Test Run

Figure 66 shows a collapsed version of Figure 65. The upper, left corner remained; these

are the Slow Pions. The left most column was summed up to a single cell, these are the

missed Slow Pions. The upper most row was summed up; these are the mislabels for

Slow Pions. The remaining block was summed up to one cell, this is the rest of the data

set. We now can compare this to Figure 67. We see, that we have fewer mislabels and

missed fewer Slow Pion events in the multiclass test run.

125

Figure 67: Confusion Matrix for Binary Test Run

I also wanted to compare the averaged confusion matrix of the individual runs, Figure

68, with the run of all categories combined into one, Figure 67. The first thing to notice

is, that the amount of data for the individual runs are half of that for the run where all

classes were combined. Apart from that, the scores are close and differ for about 1% or

2%, I attribute this small difference to the smaller data set.

126

Figure 68: Average Confusion Matrix for Individual Particle Tests

We see all scores summarized in Table 25. I already talked about most of what can be

deduced from it, besides I referenced to this table throughout this section many times.

Table 25: Summary for Multiclass and Binary Class Test Runs

 Multiclass Binary Means

Training

Oscillation
0.002 0.002 0.002

Training Baseline 2.018 0.577 0.568

Validation

Oscillation
0.006 0.006 0.005

Validation Baseline 1.982 0.537 0.525

Baseline Gap 0.036 0.040 0.042

Accuracy 0.834 0.767 0.777

Precision 0.359 0.748 0.770

MCC 0.328 0.536 0.554

Labeled Correctly 0.495 0.807 0.793

Mislabels 0.641 0.252 0.230

127

Figure 69: Score Summary for Multiclass and Binary Class Test Runs

Figure 69 shows a visual representation of the scores in regards to Slow Pions only.

While accuracy is above 80% for the multiclass test, all other scores are far worse, the

precision is below 40%, the MCC is below 0.4, not even half of all Slow Pions were found

and more than 60% of what was labeled Slow Pion, was incorrectly labeled. The other

two runs performed similarly and to the extent of what we expected.

128

Figure 70: Score Report for Multiclass Test Run

Figure 70 shows all the scores from Figure 69 for every single category. The accuracy

is in all cases strong, but the precision is plummeting on all cases. We also notice here

how many events were wrongly categorized, especially Electrons, Muons and Protons.

The conclusion for these tests has to be, that testing for individual particles and

combined backgrounds makes a whole lot more sense and that one should fray away

from training every category at once. It is much more helpful to train specifically for

the particles one is trying find, than to do it all at once.

7.3.4 Tests against Larger Combinations

In this section I continue the network setup from the previous section. This means the

Large Network will be run for 150 epochs. This time it is running on different data set

configurations. I combined several particles together into what I call Heavy

129

Background, containing Protons, Anti-Deuterons, Kaons and Pions. The next combined

data set is Kaons and Pions and the last is Electrons, Muons and Gammas, it is called

Light Background. Since I am using balanced datasets, all runs will run with roughly

thrice as many Slow Pions as compared to the single particle runs.

Figure 71: Loss Curves for Grouped Particles

Figure 71 shows what was already to be expected from the previous section, the scores

are summarized in Table 26. The Heavy Background, performed weak, in the sense,

that it has the highest baselines at 0.587 and 0.551 for training and validation loss, it

has the smallest gap at 0.036. The heavy particles achieved a MCC of 0.499, which is just

slightly smaller than the mean MCC for the individual particles at 0.505.

The Medium Background particles have their baselines at 0.544 and 0.497 with a gap of

0.047. The validation loss has the only oscillation value out of line with the others at

0.069. There are several peaks throughout the curve. Interestingly the individual

particles have half the validation oscillation at 0.012 and 0.011. This run had a MCC of

0.620, which is nearly equal to the mean MCC of the individual particles at 0.628.

The Light Background particles, performed good, they have the lowest baselines at

0.539 and 0.488 with a gap of 0.051. This is the largest gap of the three runs. The

validation oscillation is still small, but interestingly even larger than for the Heavy

Background particles, at 0.012. The MCC is at 0.644, which is larger than the mean value

for the individual particles, which is at 0.544. This score included the Gammas, if we

130

exclude them, the mean MCC is 0.645, which is spot on. It makes sense to exclude

Gammas, since their data set is significantly smaller than that for Electrons and Muons.

Table 26: Summary for Grouped Particles

Heavy Background

Medium

Background
Light Background

Training

Oscillation
0.001 0.002 0.002

Training Baseline 0.587 0.544 0.539

Validation

Oscillation
0.004 0.069 0.012

Validation Baseline 0.551 0.497 0.488

Baseline Gap 0.036 0.047 0.051

Accuracy 0.748 0.806 0.822

Precision 0.725 0.765 0.821

MCC 0.499 0.62 0.644

Labeled Correctly 0.82 0.883 0.83

Mislabels 0.275 0.235 0.179

131

Figure 72: Summary for Grouped Particles

Figure 72 shows the visual summary of the scores for the three grouped runs. The

heavy particles had the lowest accuracy and precision at only 74.8% and 72.5%, which

is reflected in the fewest numbers of Slow Pions found and the largest mislabels at 82%

and 27.5%. The mean value of Slow Pions from the last section is at 77.3%, which is

quite a bit smaller. The mean value for mislabels is at 24.9%, which is also reduced.

The Medium Background particles have the second highest accuracy and precision at

80.6% and 76.5%. This run found the most Slow Pions out of these three and it had the

second most mislabels at 88.3% and 23.5% respectively. The mean number of Slow

Pions is at 82.8 %, again it is a bit less if we test against individual particles. The mean

mislabels are at 19.3 % and here we are again at a larger value.

For the light data set I will exclude Gammas from the mean scores for the

aforementioned reasons. The accuracy and precision were the highest in this run, at

82.2% and 82.1%. The number of Slow Pions found and the number of mislabels are at

83% and 17.9%. The mean values for these scores are 83.6% and 19%. The number of

Slow Pions found is nearly identical and the number of mislabels is lower for the

grouped particles.

132

The conclusion I draw from this is, that testing heavier particles in a grouped manner

helps in finding Slow Pions against a larger background of other particles, but it also

increases the number of mislabels. This holds true for the heavy and medium

background. Lighter particles can be grouped, it even helps decreasing the number of

mislabels.

7.3.5 The runs against Slow Electrons

In this section I want to test the Large Network for 150 epochs against so called Slow

Electrons. In one run I want to employ all events and, in another run, I want to exclude

all events, where only one pixel lights up in the nine-by-nine PXD images. This should

help in lowering the ambiguity posed by single pixel events and thus lower mislabels.

One should keep in mind, that this also lowers the number of Slow Pions, even if the

percentage number is larger, because the overall number of events is lowered. This

was shown in the section Simulated data.

Figure 73: Loss Curves for Slow Electrons

Figure 73 shows us the loss curves for the Slow Pions against Slow Electrons. The scores

are summarized in Table 27. The first thing one sees is that the baselines for the full

data sets lay quite a bit lower, 0.541 and 0.491 as compared to 0.564 and 0.520 for the

no single pixels run. The gaps are at 0.05 for the full data set and 0.044 for the no single

pixels run. The oscillation scores are larger for the no single pixles run. All this shows,

133

that it was learning slower, which can entirely be explained by the fact, that the data

set is much smaller.

Table 27: Summary for Slow Electrons

 All Events No Single Pixel Events

Training Oscillation 0.003 0.004

Training Baseline 0.541 0.564

Validation Oscillation 0.009 0.01

Validation Baseline 0.491 0.52

Baseline Gap 0.05 0.044

Accuracy 0.82 0.792

Precision 0.82 0.789

MCC 0.641 0.583

Labeled Correctly 0.82 0.796

Mislabels 0.18 0.211

Figure 74 shows the summary visualized. My interpretation from earlier, that the

difference is just due to the size of the data sets, is further strengthened. The accuracies

are at 82% and 79.2%, this is a gap of 2.8%. The precisions are at 82% and 78.9%, this is

a gap of 3.1%. The number of Slow Pions found fell from 82% down to 79.6% by 2.4%

and the mislabels rose by 3.1% from 18% up to 21.1%. The biggest changed was in MCC,

the full data set had 0.641 and the no single pixels had 0.583. Overall, all scores changed

by about 3% and all the charts lay pretty close.

A further comparison to ordinary Electrons shows, that the accuracies are the same,

within a margin of error, at 82% for Slow Electrons and 81.8% for ordinary Electrons.

The precisions were at 82% and 80.4%. There is not much in change for these data sets.

134

Figure 74: Summary for Slow Electrons

7.3.6 No Single Pixel Runs

Prompted by the results from the tests against Slow Electrons, I wanted to verify them

by testing the Large Network with no single pixel events. I will keep the description

here as short as possible, since a lot will repeat from earlier sections.

Figure 75: No Single Pixels against Individual Particles

135

The loss curve in Figure 75 look no different than the results for the full data sets. The

scores are summarized in Table 28. The oscillation value for training and loss for all

runs is less or equal to 0.01 this results in a mean value of 0.003 for training and 0.007

for validation. Both scores are a negligibly smaller than 0.005 and 0.010 for the full sets.

Again, the highest baselines are for Anti-Deuterons, followed by Protons with other

particles in these runs laying relatively close to each other. The gaps between baselines

decreased, which indicates a better generalization, but this decrease is inconsequential.

More interesting is, that the MCC fell from 0.554 down to 0.506, on a mean. Even though

I removed every event, that could potentially be ambiguous, the correlation between

correct guesses and labels weakened. Overall accuracy and precision fell each by 2.5%

and 2.2% and with this 2.7% fewer Slow Pions were found and the mislabels increased

for 2.2%. The only test, that profited from the exclusion of single pixel events was beam

background, here 2.8% more Slow Pions were found. It is important to remember, that

this does not mean, that in total more Slow Pions were found, but relative to the amount

data used in these runs. Against beam background was also the lowest increase in

mislabels of 0.9%. Protons were neutral in the decrease of Slow Pions found, but here

the number of mislabels jumped the strongest with 4.5%. Anti-Deuterons had the

biggest drop in Slow Pions found and was close to the mean increase in mislabels with

2.6%.

Table 28: Summary for No Single Pixels Run

 DD PP PI KK MM EL BB

Training

Oscillation
0.002 0.003 0.003 0.004 0.004 0.004 0.003

Training

Baseline
0.66 0.609 0.561 0.57 0.56 0.564 0.57

Validation

Oscillation
0.003 0.005 0.009 0.009 0.009 0.01 0.004

Validation

Baseline
0.647 0.58 0.516 0.528 0.518 0.52 0.527

136

Baseline

Gap
0.012 0.028 0.045 0.042 0.042 0.044 0.044

Accuracy 0.613 0.714 0.792 0.784 0.795 0.792 0.779

Precision 0.626 0.692 0.79 0.783 0.796 0.789 0.76

MCC 0.227 0.43 0.584 0.567 0.589 0.583 0.56

Labeled

Correctly
0.589 0.776 0.794 0.791 0.798 0.796 0.818

Mislabels 0.374 0.308 0.21 0.217 0.204 0.211 0.24

Figure 76: Summary for No Single Pixels Run

Figure 76 paints a very similar pictures to what Figure 62 already draw. These graphs

make the worsening of the results more apparent. Anti-Deuterons and Protons fall

further behind and the distinction between the heavier and lighter particles becomes

stronger. The only improvement becomes clear as well, the distance between Beam

Background and the lighter particles vanishes.

The general conclusion from this can only be, that excluding single particle events does

not improve the quality of the categorization done by the network. This holds true

137

especially for heavier particles such as Protons and Anti-Deuterons. The slight decrease

in score can still be entirely due to the fact, that the training and validation data sets

were smaller and thus the network had less for work with. This seems possible due to

the fact, that the decreases are only around 2%. In this sense we got similar results as

we got with no single pixels for Slow Electrons.

7.3.7 One Last Test Run

Throughout my analysis I alluded to this last experiment, where I use a linear network

with 7, 5 and 3 layers and the AdaHessian optimizer and I ran it for 200 epochs. The

reasoning for these test runs was, that AdaHessian showed a lot of promise very early

on, without tinkering. I wanted to test it on a simpler network, in order to keep the time

requirements short.

Figure 77: Loss Curves for AdaHessian

Figure 77 shows the loss curves for the 200 epoch test runs with AdaHessian optimizer.

The baselines for the 7-layer setup are at 0.659 and 0.683, with a gap of 0.024, which is

smaller than the gaps for the Small, Medium and Large Network. Their gaps are all

larger than 0.034 for 200 epochs. Still the baselines were lower. The validation

oscillation values are at 0.045, 0.043 and 0.035. This is around seven to nine times

larger, than 0.005 for the Large Network for 200 epochs.

138

Table 29: Summary for AdaHessian Test Runs

 7 Layers 5 Layers 3 Layers

Training

Oscillation
0.015 0.003 0.004

Training Baseline 0.659 0.634 0.625

Validation

Oscillation
0.045 0.043 0.035

Validation Baseline 0.683 0.609 0.592

Baseline Gap 0.024 0.025 0.033

Accuracy 0.611 0.756 0.758

Precision 0.773 0.745 0.729

MCC 0.276 0.513 0.519

Labeled Correctly 0.315 0.776 0.809

Mislabels 0.227 0.255 0.271

Figure 78 and Table 29 are the summaries for these three runs. Seven layers only

achieved an accuracy of 61.1%, which quite a bit lower than 75% for the five- and three-

layer setups. The precisions are close at 77.3%, 74.5% and 72.9% for the seven-, five-

and three-layer setup.

The three- and five-layer setup performed comparably, they have both a MCC of 0.51,

which is spot-on with the long-term tests for all three networks. Both AdaHessian

setups found more than 77%, the smaller network found more than 80%, but also had

the most mislabels. The seven-layer network had the weakest MCC at 0.276, the MCC

for the Small, Medium and Large Network for 200 epochs all were above 0.5, nearly

twice as large as this. It found the least number of Slow Pions at 31.5% and the fewest

mislabels at 22.7%. There is a large gap in Slow Pions correctly labeled of at least 46.1%

and the small gap in mislabels of 2.8%.

Taking this all together, the seven-layer network did not perform well. The five- and

three-layer performed similarly, but they did not outperform the three networks from

the long-term test, while running longer. The only argument speaking for AdaHessian,

139

would be this. One trains the Large Network with AdaHessian for 200, 300, 400 epochs

and so on, of course, after tweaking the learning rate. Then one has a well-trained

network. The optimizer is only involved in training and cannot hinder the evaluation

performance. Together with the fact, that one has to train only once, it might be worth

using AdaHessian going forward.

Figure 78: Summary for AdaHessian Test Runs

140

8 Summary & Concusions

Hooray! A Happy Ending For The Rich People.

Dr. John A. Zoidberg

8.1 What did we achieve?

Throughout this work we saw relative similar performances by larger and smaller

network setups, with an accuracy of ranging from 76% for the Small Network and small

increase for the Medium Network up to nearly 77% for the Large Network. The

precision stayed around 75% for the Large Network, it was a bit lower for the Medium

Network and it was around 74% for the Small Network. We saw, that smaller networks

require less training, otherwise they will lose generalization. Bigger networks could

increase their capabilities given longer training, with the catch, that with more time

the number of mislabels also increased.

Judging from the loss curves, the Large and Medium Network could generalize better

than the Small Network. This was indicated by the smaller baseline gaps for the larger

networks and the higher oscillations for the smaller networks.

When I tested Slow Pions individually against every particle, we saw, that Anti-

Deuterons and Protons were revealed to be very challenging. They had the lowest

accuracy of all particles at 64% and 74%, while all others were above 80%, with the

exception of Beam Background at 78%, which can be explained by the smaller size of

the data set. Anti-Deuterons and Protons also produced the lowest precision of 65% and

74%, where all others were above 80%, except for Beam Background, which was at

77%.

These scores were all confirmed by two further tests, one where I combined the smaller

sets into three larger sets and one where I excluded single pixel events. The single pixel

events were about 2% to 3% worse in every score, as compared to the full sets. This can

entirely be due to the smaller size of the sets. The combined sets achieved accuracies

of 75%, 80% and 82%, the averaged accuracies for the individual sets corresponding to

the combined sets are 75%, 81% and 81%. These scores are matching within a margin

of error. The same holds true for precision, with 75%, 77% and 82% for the Heavy,

141

Medium and Light Backgrounds and the respective averaged precisions of 75%, 81%

and 80%. Only the Medium Background had a bit worse precision if tested in a

combined manner.

The Large Network, with which these tests were done, achieved an accuracy of 77%

and a precision of 75% for 150 epochs. The averaged accuracy for the individual tests

is 79% and the precision is at 79%. Here running each particle individually slightly

improved the scores.

In a realistic setting it is not possible to tests each set individually. If it were, then we

would already have the sets separated out and there would be no need for using a

neural network in order to sort the particles out.

In conclusion I can say, that the Large Network for 150 epochs performed well and if it

would be possible to separate Anti-Deuterons and Protons out before hand, then this

network could achieve an accuracy of above 80% with a precision near 80%. Guessing

from the individual tests, most mislabels came from Anti-Deuterons and Protons.

I tested Slow Pions against Slow Electrons in much the same manner as did Erwin Do38.

Unlike him, I only tested full data sets and left out single pixel events, he did more

extensive tests here. My Network achieved an accuracy and precision of 82%, excluding

single pixel events decreased this number by the familiar 3%. The tests against

ordinary Electrons got scores of 82% for accuracy and 80% for precision, thus there

was no performance impact for Slow Electrons vs. Slow Pions as compared to Electrons

vs. Slow Pions.

The goal of this was it to employ a neural network in order to find Slow Pions within a

larger background of other particles and beam-background. This was achieved to the

extent, that a simpler network could find the majority of Slow Pions with a high

precision of 80%, while keeping training time low. Thus, also validation can be done

swiftly, even for enormous data sets and on weaker hardware.

38 Ludwig-Maximilians-Universität München, 22. June 2020

142

8.2 What needs to be done?

While I conducted many tests, there is still a lot of room for experimentation. One could

do more tests with different dropout rates for each layer, test deeper networks and test

narrower layers. Furthermore, I only made a small survey of learning rate scheduler

and it might be worthwhile to try more settings and tune the learning rate better. The

same goes for activation functions, but to a lesser extent, since they have fewer

parameters. Another shortcoming of my network was, that I only employed squared

kernel sizes and it might improve the networks performance if it would look for

vertical and horizontal patterns. Testing more setups with more layer combinations of

convolutional and transposed convolutional layers might also lead to better pattern

recognition and increase the networks capabilities.

As was indicated by several of my tests in this work, I do not think that even bigger

networks will improve much of the capabilities of differentiating between data sets,

especially if we are only looking at one category against everything else. In this case

going larger even decreased the performance. Still, it can be of interest to test bigger

networks on multilabel tests, since maybe more parameters will enable the network to

adapt to more characteristics within the data sets. This again will require more

tweaking of all hyper parameters, especially learning rate and epochs.

It could give some insights into what is causing the most mislabels and against which

data set the most Slow Pions, if the individual labels for each particle would be retained,

even in the case where they are combined to a bigger background. Then one could

check the mislabels, from which category they came. So far, I can only make inferences

from the individual tests.

In terms of analysis and visualization, there is also all lot more to do. One could

compare loss curves not just for each set of runs, like I did, but also more cross

comparisons. For example, plotting the loss curves for Small, Medium and Large

Network for epochs and not network sizes or comparing individual particles with their

respective combined backgrounds. I tried to facilitate these kinds of comparisons by

employing what is called oscillation and baselines, I also did not want to exhaust the

reader too much, with too many graphs and plots. Additionally, one should look at the

143

convergences of each of the loss curves fits I made. This might give further indications,

which setups will achieve given enough time, without actually running for that amount

of time, or at least one can tell for how long it would be wise to train.

I tried linear, convolutional and transposed convolutional layers in my network. There

are more kinds of layers, as I already mentioned throughout this work. There are

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks,

which both belong to the same class and are mostly applied in cases of sequential data,

like speech and text. This is not strictly the case with PXD data, which are independent

events. The next type of network one could test are Graph Neural Networks (GNNs),

which can find relations between objects and events and organize them into graphs

(105), which is also not the case for PXD data.

Besides implementing more features in the code, I would restructure it. Training and

validation should be done separately, the same holds for plotting and analyzing the

output. This should be done with different files, instead of all on just one big file. The

output should be more diversified. While I could do all my plots from the log files, it

would be tremendously helpful to write out files that can be plotted without any further

manipulation.

If PXD data could be processed in sequences and not like independent events, RNNs

and LSTMs could yield improvements and maybe within the PXD data are hidden

metadata containing graph like relations, which then would make GNNs sensible. This

might be the case if one included the event coordinates, with were mentioned in the

section Simulated data. This is just speculation in my part.

Lastly, neural networks performance is strongly dependent on the representation of

the data. This means, one should preprocess the data in order to find a more optimized

representation and eventually find better results.

144

9 Bibliography

The world is not in your books and maps. It's out there.

Olórin

1. Recent Anomalies in B Physics. Ying Li, Cai-Dian Lü. s.l. : arXiv, 2018.

2. Lattice QCD inputs to the CKM unitary triangle analysis. Laiho, and al, . s.l. : Physical Review

D, 2010, Vol. 81.

3. The Matter-Antimatter Asymmetry Problem. Robson, Brian Alber. s.l. : Journal of High Energy

Physics, Gravitation and Cosmology, 2018, Vol. 4.

4. A proposal for B-physics on current lattices. Blossier, , et al. 4, s.l. : Journal of High Energy

Physics, 2010, Vol. 49.

5. Charming new B-physics. Jäger, , et al. 3, s.l. : Journal of High Energy Physics, 2020.

6. Belle B physics results. Collaboration, and Tajima, . 22, s.l. : International Journal of Modern

Physics A , 2002, Vol. 17.

7. Online-analysis of hits in the Belle-II pixeldetector for separation of slow pions from background.

Bähr, and al, . 9, s.l. : Journal of Physics: Conference Series, 2015, Vol. 664.

8. Impact of tag-side interference on time-dependent CP asymmetry measurements using coherent

B0-B0bar paris. Long, , et al. s.l. : Physical Review D, 2003, Vol. 68.

9. Isgur, and Wise, Mark B. elationship between form factors in semileptonic B and D decays

and exclusive rare B-meson decays. Physical Review D. 1990.

10. Bevan, and al, . The physics of the B factories. s.l. : Springer Nature, 2017.

11. Improved measurement of CP-violation parameters sin 2 ϕ 1 and| λ|, B meson lifetimes, and

B 0-B¯ 0 mixing parameter Δ m d. Abe, and al, . 7, s.l. : Physical Review D, 2005, Vol. 71.

12. Münchow, . Development of the Online Data Reduction System and Feasibility Studies of 6-

Layer Tracking for the Belle II Pixel Detector. Gießen : Doctoral dissertation, 2015.

13. Lifetime differences, direct CP violation, and partial widths in D 0 meson decays to K+ K− and

π+ π−. Csorna, S. E. and al, . 9, s.l. : Physical Review D, 2002, Vol. 65.

14. Univeristät Mainz. First particles circulate in SuperKEKB accelerator. Phys.org. [Online] 14

April 2016. https://phys.org/news/2016-04-particles-circulate-superkekb.html.

15. Ohnishi, , et al. Accelerator design at SuperKEKB. Progress of Theoretical and Experimental

Physics. 2013.

16. Ohnishi, . Report on SuperKEKB phase 2 commissioning. Proc. IPAC’18. 2018.

145

17. SuperKEKB collider. Akai, , Furukawa, and Koiso, . s.l. : Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 2018, Vol. 907.

18. KEK. Electrons and Positrons Collide for the first time in the SuperKEKB Accelerator. KEK.

[Online] 26 April 2018. https://www.kek.jp/en/newsroom/2018/04/26/0700/.

19. Kinoshita, . Reflections on beauty. New Astronomy Reviews . 1998.

20. Irmler, , et al. Origami chip-on-sensor design: progress and new developments. Journal of

Instrumentation. 2013. Vol. 8.

21. The Belle II pixel vertex detector. Furletov, . Zurich : IOP Publishing, 2011.

22. Paschen, , et al. Belle II pixel detector: Performance of final DEPFET modules. Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment. 2020.

23. Andricek, , et al. Initial requirements for an upgraded VXD in Belle II. Belle II. 2019.

24. Lang, Christian B. and Pucker, . Mathematische Methoden in der Physik. s.l. : Springer

Spektrum, 2005.

25. Wikipedia. Tensor. Wikipedia. [Online] 20 April 2021. https://de.wikipedia.org/wiki/Tensor.

26. Kerner, and Wahl, . Mathematik für Physiker. s.l. : Springer Berlin Heidelberg, 2013.

27. Chollet, . Deep learning with Python. New York : Manning, 2018.

28. Goodfellow, and Courville, Yoshua Bengio and Aaron. Deep Learning. Massachusetts :

MIT press, 2017.

29. Graph neural networks in particle physics. Shlomi, , Battaglia, and Vlimant, . s.l. : Machine

Learning: Science and Technology, 2020.

30. Machine Learning in High Energy Physics Community White Paper. Albertsson, , et al. 2018,

Journal of Physics: Conference Series.

31. Neural networks in high energy physics: a ten year perspective. Denby, . s.l. : Computer

Physics Communications, 1999.

32. Trask, Andrew W. Deep Learning. 2019.

33. Christian, . The Alignment Problem: Machine Learning and Human Values. s.l. : WW Norton

& Company, 2020.

34. Application of artificial neural networks in particle physics. Kolanoski, . Heidelberg :

International Conference on Artificial Neural Networks, Vol. 1996.

35. Shanahan, . The Frame Problem. [Online] 23 February 2004. [Cited: 14 April 2021.]

https://plato.stanford.edu/entries/frame-problem/.

146

36. Vervaeke, , Lillicrap, Timothy P. and Richards, Blake A. Relevance realization and the

emerging framework in cognitive science. Journal of Logic and Computation. 2012.

37. Burkov, . The hundred-page machine learning book. 2019.

38. Reconstruction of porous media from extremely limited information using conditional

generative adversarial networks. Feng, , et al. 2019, Physical Review E.

39. Torch Contributors. TORCH.NN. PyTorch. [Online] 2019.

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity.

40. Heaton, . Introduction to the Math of Neural Networks. s.l. : Heaton Research Inc., 2012.

41. Torch Contributors. NLLLOSS. PyTorch. [Online] 2019.

https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss.

42. Doshi, . Various Optimization Algorithms For Training Neural Network. [Online] 13 January

2019. [Cited: 20 April 2021.] https://towardsdatascience.com/optimizers-for-training-neural-

network-59450d71caf6.

43. Ruder, . An overview of gradient descent optimization algorithms. [Online] 19 January 2016.

[Cited: 20 April 2021.] https://ruder.io/optimizing-gradient-descent/.

44. Price, , et al. Stochastic gradient descent. [Online] 21 December 2020. [Cited: 20 April 2021.]

https://optimization.cbe.cornell.edu/index.php?title=Stochastic_gradient_descent.

45. Kincaid, . Adam. [Online] 21 December 2020. [Cited: 20 April 2021.]

https://optimization.cbe.cornell.edu/index.php?title=Adam.

46. Huang, . RMSProp. [Online] 21 December 2020. [Cited: 20 April 2021.]

https://optimization.cbe.cornell.edu/index.php?title=RMSProp.

47. Heaton, . Introduction to neural networks with Java. s.l. : Heaton Research Inc., 2008.

48. Kumar, . Overview of various Optimizers in Neural Networks. [Online] 9 June 2020. [Cited:

17 April 2021.] https://towardsdatascience.com/overview-of-various-optimizers-in-neural-

networks-17c1be2df6d5.

49. ADAHESSIAN: An adaptive second order optimizer for machine learning. Yao, and al, . s.l. :

arXiv preprint , 2020.

50. Dertat, . Applied Deep Learning - Part 4: Convolutional Neural Networks. [Online] 8

November 2017. [Cited: 18 April 2021.] https://towardsdatascience.com/applied-deep-learning-

part-4-convolutional-neural-networks-584bc134c1e2.

51. IBM Cloud Education. Convolutional Neural Networks. [Online] 20 October 2020. [Cited: 20

April 2021.] https://www.ibm.com/cloud/learn/convolutional-neural-networks.

147

52. Skalski, . Gentle Dive into Math Behind Convolutional Neural Networks. [Online] 12 April

2019. [Cited: 20 April 2021.] https://towardsdatascience.com/gentle-dive-into-math-behind-

convolutional-neural-networks-79a07dd44cf9.

53. Zhang, , et al. Transposed Convolution. [Online] 23 April 2021. [Cited: 4 May 2021.]

http://d2l.ai/chapter_computer-vision/transposed-conv.html.

54. Anwar, . What is Transposed Convolutional Layer? [Online] 6 March 2020. [Cited: 4 May

2021.] https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11.

55. Shibuya, . Up-sampling with Transposed Convolution. [Online] 13 November 2017. [Cited: 4

May 2021.] https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-

9ae4f2df52d0.

56. Fredenslund, . Introduction To The Basics Of Neural Networks - How Does Backpropagation

Work? [Online] [Cited: 20 April 2021.] https://kasperfred.com/series/introduction-to-neural-

networks/how-does-backpropagation-work.

57. Kostadinov, . Understanding Backpropagation Algorithm. [Online] 8 August 2019. [Cited: 20

April 2021.] https://towardsdatascience.com/understanding-backpropagation-algorithm-

7bb3aa2f95fd.

58. Yadav, . Weight Initialization Techniques in Neural Networks. [Online] 9 November 2018.

[Cited: 18 April 2021.] https://towardsdatascience.com/weight-initialization-techniques-in-

neural-networks-26c649eb3b78.

59. Understanding the difficulty of training deep feedforward neural networks. Glorot, and

Bengio, . s.l. : JMLR Workshop and Conference Proceedings, 2010. Proceedings of the thirteenth

international conference on artificial intelligence and statistics . pp. 249-256.

60. Venners, . The Making of Python A Conversation with Guido van Rossum. Artima. [Online]

13 January 2003. [Cited: 30 March 2021.] https://www.artima.com/articles/the-making-of-

python.

61. Pramanick, . History of Python. Geeks for Geeks. [Online] 6 May 2019. [Cited: 30 March 2021.]

https://www.geeksforgeeks.org/history-of-python/.

62. Stuff, . A Brief history of the Python Programming Language. DigitalAdBlog. [Online] 4

March 2021. [Cited: 30 March 2021.] https://digitaladblog.com/2021/03/04/a-brief-history-of-the-

python-programming-language/.

63. Synced. Caffe2 Merges With PyTorch. Medium. [Online] 2 April 2018. [Cited: 30 March 2021.]

https://medium.com/@Synced/caffe2-merges-with-pytorch-a89c70ad9eb7.

64. Shetty, . What is PyTorch and how does it work? Packt. [Online] 18 September 2018. [Cited:

30 March 2021.] https://hub.packtpub.com/what-is-pytorch-and-how-does-it-work/.

148

65. Howard, . Deep Learning Frameworks - TensorFlow, PyTorch, fast.ai. [interv.] Lex Fridman.

6 October 2019.

66. Dancuk, . PyTorch vs TensorFlow: In-Depth Comparison. [Online] 23 February 2021. [Cited:

11 May 2021.] https://phoenixnap.com/blog/pytorch-vs-tensorflow.

67. Boesch, . Pytorch vs Tensorflow: A Head-to-Head Comparison. [Online] 2 March 2021. [Cited:

11 May 2021.] https://viso.ai/deep-learning/pytorch-vs-tensorflow/.

68. Nvidia Deep Learning Frameworks Documentation. PyTorch Release Notes. [Online]

[Cited: 30 March 2021.] https://docs.nvidia.com/deeplearning/frameworks/pytorch-

release-notes/overview.html#overview.

69. Classification assessment methods." Applied Computing and Informatics. Tharwat, .

2020.

70. An introduction to ROC analysis. Fawcett, . s.l. : Pattern recognition letters, 2006.

71. Burkov, . The HundredPage Machine Learning Book. 2019.

72. Generalized Confusion Matrix for Multiple Classes. Manliguez, . 2016,

www.researchgate.net.

73. Krüger, . Activity, Context, and Plan Recognition with Computational Causal Behaviour

Models. 2016.

74. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness

and correlation. Powers, David MW. 2020.

75. The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation. Chicco, and Jurman, . s.l. : BMC genomics,

2020.

76. OpenStax. The Standard Model. Physics LibreTexts. [Online] 5 November 2020.

https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_

(OpenStax)/Book%3A_University_Physics_III_-

_Optics_and_Modern_Physics_(OpenStax)/11%3A_Particle_Physics_and_Cosmology/11.06%

3A_The_Standard_Model.

77. Boyle, Peter A. Standard Model. Edinburgh : s.n., 2014.

78. Wolchover, . What No New Particles Means for Physics. [Online] 9 August 2019. [Cited:

21 April 2021.] https://www.quantamagazine.org/what-no-new-particles-means-for-

physics-20160809.

79. Povh, Bogdan, et al. eilchen und Kerne: eine Einführung in die physikalischen

Konzepte. s.l. : Springer-Verlag, 2013.

149

80. LEIFIphysik. [Online] [Cited: 9 April 2021.] https://www.leifiphysik.de/kern-

teilchenphysik/teilchenphysik/grundwissen/die-vier-fundamentalen-wechselwirkungen.

81. Wikipedia. Fundamental interaction. [Online] [Cited: 9 April 2021.]

https://en.wikipedia.org/wiki/Fundamental_interaction.

82. Ramond, . Journeys Beyond the Standard Model. Cambridge : Perseus Books, 1999.

83. Tuning, . Lecture Notes on CP Violation. 2020.

84. Gronau, . A Variety of CP Violating B Decays. Oxford : s.n., 1995.

85. Pich, . CP Violation. Geneva : s.n., 93.

86. The Editors of Encyclopaedia Britannica. Gauge theory . [Online] [Cited: 26 April 2021.]

https://www.britannica.com/science/gauge-theory.

87. Hooft, Gerard 't. Gauge theories. [Online] 2008. [Cited: 26 April 2021.]

https://en.wikipedia.org/wiki/Gauge_theory.

88. Encyclopedia of Mathematics. Gauge transformation. [Online] [Cited: 26 April 2021.]

https://encyclopediaofmath.org/index.php?title=Gauge_transformation.

89. The Standard Model of Particle Physics. Romanino, . Trieste : INFN, SISSA/ISAS, 2009,

nternational Baikal Summer School on Physics of Elementary Particles and Astrophysics.

90. Nave, . Left-Handed Neutrinos. [Online] [Cited: 26 April 2021.] http://hyperphysics.phy-

astr.gsu.edu/hbase/Particles/neutrino3.html.

91. CP violation in the B system. Gershon, T., and V. V. Gligorov. s.l. : Reports on Progress

in Physics, 2017.

92. Rare kaon and pion decays: incisive probes for new physics beyond the standard

model. Bryman, and al, . s.l. : Annual Review of Nuclear and Particle Science, 2011, Vol. 61.

93. Lange, . Vorlesung Höhere Teilchenphysik. Gießen : s.n., 2019.

94. Demtröder, . Experimentalphysik 4. Heidelberg : Springer Berlin, 2010.

95. Mazur, . Unitary triangle. symmetry - dimensions of particle physics. [Online] 1

January 2006. [Cited: 31 March 2021.]

https://www.symmetrymagazine.org/article/december-2005january-2006/deconstruction-

unitary-triangle.

96. The CKM matrix and the unitarity triangle. Battaglia, and al, . s.l. : arXiv preprint hep-

ph/0304132, 2003.

97. Relating CKM Parametrizations and Unitarity Triangles. Lebed, Richard F. s.l. :

Physical Review D, 1997, Vol. 55.

98. Gershon, . A triangle that matters. Physics World. [Online] IOP Publishing, 2 April 2007.

[Cited: 29 March 2021.] https://physicsworld.com/a/a-triangle-that-matters/.

150

99. B-physics anomalies: a guide to combined explanations. Buttazzo, Dario, Admir Greljo,

Isidori, and Marzocca, . 11, s.l. : Journal of High Energy Physics, 2017, Vol. 44.

100. A new inclusive secondary vertex algorithm for b-jet tagging in ATLAS. Piacquadio,

and Weiser, . 3, s.l. : Journal of Physics: Conference Series, 2008, Vol. 119.

101. How to determine all the angles of the unitarity triangle from B0d → DKs and B0s →

DΦ. Gronau, . 3,4, s.l. : Physics Letters B, 1991, Vol. 253.

102. How many hidden layers and nodes? Stathakis, . s.l. : International Journal of Remote

Sensing, 2009.

103. Brownlee, . How to use Learning Curves to Diagnose Machine Learning Model

Performance. [Online] 27 February 2019. [Cited: 5 June 2021.]

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-

model-performance/.

104. Google Developers. Interpreting Loss Curves. [Online] [Cited: 5 June 2021.]

https://developers.google.com/machine-learning/testing-debugging/metrics/interpretic.

105. Menzli, . Graph Neural Network and Some of GNN Applications – Everything You Need

to Know. [Online] 9 April 2021. [Cited: 21 May 2021.] https://neptune.ai/blog/graph-neural-

network-and-some-of-gnn-applications.

106. he Belle II silicon vertex detector: Assembly and initial results. Thalmeier, and a, .

s.l. : Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 2019, Vol. 936.

107. Silicon Vertex Detector. Belle II Italian collaboration. [Online] [Cited: 30 March 2021.]

https://web.infn.it/Belle-II/index.php/detector/svd.

108. New electronics tested for Belle II central drift chamber. [Online] 23 March 2010.

[Cited: 30 March 2021.]

https://www2.kek.jp/proffice/archives/feature/2010/BelleIICDCDesign.html.

109. Three-dimensional Fast Track for the Central Drift Chamber Based Level-1 Trigger

System in the Belle II Experiment. Won, and Kim, J. B. 1, s.l. : Journal of the Korean Physical

Society, 2018, Vol. 72.

110. TOP detector. Belle II Italian collaboration. [Online] [Cited: 30 March 2021.]

https://web.infn.it/Belle-II/index.php/detector/top/22-top-detector.

111. Electromagnetic Calorimeter. Belle II Italian collaboration. [Online] [Cited: 30 March

2021.] https://web.infn.it/Belle-II/index.php/detector/ecl.

112. KLM detector. Belle II Italian collaboration. [Online] [Cited: 30 March 2021.]

https://web.infn.it/Belle-II/index.php/detector/klm.

151

113. Observation of Exclusive Decay Modes of b-Flavored Mesons. Behrends, and al, . 12,

s.l. : Physical Review Letters, 1983, Vol. 50.

114. Neutral B flavor tagging for the measurement of mixing-induced CP violation at

Belle. Kakuno, and al, . 3, s.l. : Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, Vol.

533.

115. b Tagging in Atlas and CMS. Scodellaro, . s.l. : CMS, 2017, Vol. 225.

116. Lellouch, , Lin, C-J. David and Collaboration, . Standard model matrix elements for

neutral B-meson mixing and associated decay constants. Physical Review D. 2001.

117. Dorigo, . New Exclusive Upsilon Decays Observed By Belle! [Online] 10 May 2012.

[Cited: 13 April 2021.]

https://www.science20.com/quantum_diaries_survivor/new_exclusive_upsilon_decays_ob

served_belle-89925.

118. Marino, Gaetano de. D0 Lifetime Measurment with Belle II Early Data. Pisa : s.n., 2019.

119. Gamsızkan, and Collaboration, . Observation of the rare B0s??+?-decay from the

combined analysis of CMS and LHCb data. 2015.

120. Slow Pion Relative Tracking Efficiency In Belle II. Souvik Maity, N Sushree Ipsita. s.l. :

XXIV Dea-Brns High Energy Physics Symposiun, 2020.

121. Browder, , Oide, and Iijima, . Belle II super-B factory experiment takes shape at KEK.

[Online] 12 August 2016. [Cited: 13 April 2021.] https://cerncourier.com/a/belle-ii-super-b-

factory-experiment-takes-shape-at-kek/.

122. Kapliy, . Discovery of the Pion. Chicago : s.n., 30 April 2008.

123. Feldman, G. J., et al. Observation of the Decay D*+→ D 0 π+. Physical Review Letters.

1977.

124. Jung, Andereas Werner. Measurement of the D* Meson Cross Section and Extraction

of the Charm Contribution, F2c (x, Q2), to the Proton Structure in Deep Inelastic ep

Scattering with the H1 Detector at HERA. Heidelberg : (Doctoral dissertation), 2008.

125. Charm meson decays. Artuso, and al, . s.l. : Annual Review of Nuclear and Particle

Science, 2008, Vol. 58.

126. Herb, S. W. and al, . Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-

nucleus collisions. Physical Review Letters. 1977.

127. Spencer, John H. he Eternal Law: Ancient Greek Philosophy, Modern Physics and

Ultimate Reality. s.l. : Param Media, 2013.

128. The belle II silicon vertex detector. Friedl, and al, . s.l. : Physics Procedia, 2012, Vol. 37.

152

153

A. Additional Graphs

Event Coordinate Distributions

154

155

156

157

Additional Plots for Long-Term Test Runs

158

159

160

161

162

Confusion Matrices for all Runs

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

B. The Code Base

The Main Code

import torch

from torch import nn

from torch import optim

from torch.utils.data import TensorDataset

from torch.utils.data import DataLoader

from matplotlib import pyplot as plt

import numpy as np

import sys

import argparse

import time

import progress.bar as pb

from pathlib import Path

from helper import *

import math

from prettytable import PrettyTable

#import torch_optimizer as Toptimizers

import configparser

""""

 .d8888b. 888 .d8888b. 8888888b. 888 888

d8b 888 .d888 888

888

d88P Y88b 888 d88P Y88b 888 Y88b 888 888

Y8P 888 d88P" 888

888

Y88b. 888 888 888 888 888 888 888

888 888 888 888

 "Y888b. .d88b. 888888 888 888 88888b. 888 888 d88P 888 888

888 88888b. 88888b. 888 888 888888 888888 888

8888b. .d88b. .d8888b .d88b. 888888 .d8888b

 "Y88b. d8P Y8b 888 888 888 888 "88b 888 88888 8888888P" 888 888

888 888 "88b 888 "88b 888 888 888 888 888 "88b d88P"88b 88K d8P

Y8b 888 d88P"

 "888 88888888 888 888 888 888 888 888 888 888 888 888

888 888 888 888 888 888 888 888 888 888 .d888888 888 888 "Y8888b.

88888888 888 888

Y88b d88P Y8b. Y88b. Y88b 888 888 d88P d8b Y88b d88P 888 Y88b. .d88P d8b

888 888 888 888 d88P Y88b 888 Y88b. 888 888 888 888 Y88b 888 X88 d8b Y8b.

Y88b. Y88b. d8b

 "Y8888P" "Y8888 "Y888 "Y88888 88888P" 88P "Y8888P88 888 "Y88888P" 88P

888 888 888 88888P" "Y88888 "Y888 888 888 "Y888888 "Y88888 88888P' 88P

"Y8888 "Y888 "Y8888P Y8P

 888 8P 8P

888 888 8P

 888 " "

888 Y8b d88P "

 888

888 "Y88P"

"""

startStart = time.time()

input flags definieren, help sollte alles erklären

parser = argparse.ArgumentParser()

parser.add_argument("-i", "--infile", help="define name of settings file", type = str)

parser.add_argument("-o", "--outfile", help="define name of output files", type = str)

parser.add_argument("-b", "--batchSize", help="sets the batchsize", type = int)

parser.add_argument("-l", "--learnRate", help="sets the learn rate", type = float)

parser.add_argument("-m", "--momentum", help="sets the momentum", type = float)

parser.add_argument("-e", "--epochs", help="sets the number of epochs", type = int)

parser.add_argument("-k", "--kFold", help="sets the of k-folds", type = int)

parser.add_argument("-w", "--weightDecay", help="sets the weight decay for optimizer", type =

float)

parser.add_argument("--scheduler", help="define the scheduler used", type=str)

parser.add_argument("-g", "--gamma", help="factor by which learnRate is reduced", type =

float)

parser.add_argument("-s", "--stepSize", help="step size with which to reduce learnRate", type

= float)

192

parser.add_argument("--milestones", help="sets the milestones at which learn rate should

change", nargs='*', type = int)

parser.add_argument("--learnMax", help="the maximum learnRate for lambda scheduler", type =

float)

parser.add_argument("--learnMin", help="the minimum learnRate for lambda scheduler", type =

float)

parser.add_argument("--learnPeak", help="the epoch of learnRate peak for lambda scheduler",

type = int)

parser.add_argument("--nesterov", help="switches SGD to the Nesterov variant",

action='store_true')

parser.add_argument("--rho", help="coefficient for running average of squared gradients", type

= float)

parser.add_argument("--eps", help="numerical stability constant for optimizer", type = float)

parser.add_argument("--alpha", help="smoothing constant for RMSprop", type = float)

parser.add_argument("--learnRateDecay", help="determines the falloff for adagrad learnrate",

type = float)

parser.add_argument("--beta", help="runnung average gradient coefficients for adam",

nargs='*', type = float)

parser.add_argument("--datapath", help="sets where the data to be analyzed are stored", type =

str)

parser.add_argument("--nosinglepixels", help="exclude single pixel events",

action='store_true')

parser.add_argument("-sf", "--setFactor", help="sets a factor for the total amount of data per

set", type = float)

parser.add_argument("--balanced", help="should all data sets be about the same size?",

action='store_false')

parser.add_argument("-d", "--device", help="sets the processing device {cpu, cuda}", type =

str)

parser.add_argument("-t", "--threads", help="sets the number of processes", type = int)

parser.add_argument("-c", "--categories", help="specify the train/valid categories {dd, pi,

pp, sp, bp, bg, test}", type = str)

parser.add_argument("--retrain", help="force to retrain the net", action='store_true')

parser.add_argument("--save", help="save output data", action='store_true')

parser.add_argument("--optim", help="define the optimizer used", type=str)

parser.add_argument("-ll", "--linLayer", nargs='*', type = int)

parser.add_argument("-do", "--dropout", nargs='*', type = int)

parser.add_argument("-ch", "--channels", nargs='*', type = int)

parser.add_argument("-ks", "--kernelSize", nargs='*', type = int)

parser.add_argument("-pd", "--padding", nargs='*', type = int)

parser.add_argument("-al", "--actilin", nargs='*', type = str)

parser.add_argument("-ac", "--acticonv", nargs='*', type = str)

args = parser.parse_args()

input file file lesen

input files bestehen aus zwei sections: [SETTINGS] & [NETWORK]

in diesen sections sind dann unter den schlüsselwörtern die entsprechenden einstellungen zu

hinterlegen

config = configparser.ConfigParser()

if Path("{}".format(args.infile)).is_file():

 config.read(args.infile)

 print("reading input file {}".format(args.infile))

else:

 print("couldn't find the specified file {}".format(args.infile))

 config['SETTINGS'] = {} # um einen keyerror zuverhindern erstelle ich ein leeres dict

 config['NETWORK'] = {}

parsen der input flags, defaults definieren ...

ein paar informationen printen

settings = settingsClass()

network = networkClass()

print("programm start...")

print("the following settings will be used:")

for key in settings.list():

 try:

 inputValue = getattr(args, key) # input flag wert lesen

 except AttributeError:

 continue

 value = settings.getValue(key) # default wert laden

 if inputValue != None and inputValue != value:

 settings.setValue(key, inputValue) # input wert setzen

 print("\tset", key, "to", inputValue, "from input flags")

193

 elif key in config['SETTINGS']:

 readValue = config['SETTINGS'][key] # wert der input file lesen

 readType = getType(readValue) # daten typ bestimmen

 if readType == int:

 settings.setValue(key, int(readValue))

 elif readType == float:

 settings.setValue(key, float(readValue))

 elif readType == bool:

 readBool = config['SETTINGS'].getboolean(key)

 settings.setValue(key, readBool)

 else:

 settings.setValue(key, readValue)

 print("\tset", key, "to", readValue, "from input file: {}".format(args.infile))

 else:

 print("\tlet", key, "at", value, "from default settings")

hier wird die save flag gesetzt, sobald ein output name angegeben wird

if settings.outfile != "default name":

 settings.save = True

"""

8888888 888 d8b

8888888b. 888

 888 888 Y8P

888 "Y88b 888

 888 888

888 888 888

 888 88888b.d88b. 88888b. .d88b. 888d888 888888 888 .d88b. 888d888 .d88b. 88888b.

888 888 .d88b. 88888b. 888 888 8888b. 888888 .d88b. 88888b.

 888 888 "888 "88b 888 "88b d88""88b 888P" 888 888 d8P Y8b 888P" d8P Y8b 888 "88b

888 888 d88""88b 888 "88b 888 888 "88b 888 d8P Y8b 888 "88b

 888 888 888 888 888 888 888 888 888 888 888 88888888 888 88888888 888 888

Y88 88P 888 888 888 888 888 888 .d888888 888 88888888 888 888

 888 888 888 888 888 d88P Y88..88P 888 Y88b. 888 Y8b. 888 Y8b. 888 888

Y8bd8P Y88..88P 888 888 888 .d88P 888 888 Y88b. Y8b. 888 888

8888888 888 888 888 88888P" "Y88P" 888 "Y888 888 "Y8888 888 "Y8888 888 888

Y88P "Y88P" 888 888 8888888P" "Y888888 "Y888 "Y8888 888 888

 888

 888

 888

"""

kategorien parsen, namen, kürzel in string arrays schreiben

background ist antideuterons, pions und protons gestapelt

settings.catNames()

numbers = {} # hier werden alle numerischen parameter gespeichert

numbers["numCategories"] = len(settings.categoryNames)

outputs = outputsClass(numbers["numCategories"], settings.device) # outputs einrichten

start = time.time()

dateien/datensätze importieren

es gibt zwei datensätze:

- der normale pixel daten satz

- und ein evaluierungs datensatz, zum testen des netzes

imported = importer(settings.categoryNames, numbers, settings.datapath,

settings.nosinglepixels)

train, valid = importToTensor(imported, settings.categoryNames, settings.balanced,

settings.setFactor, settings.kFold, settings.batchSize, numbers)

end = time.time()

print("\nfinished importing, it took {0:.1f} seconds\n".format(end-start))

numbers dict enthält sämtliche parameter des datensatzes, für das netz und zeiten ...

numbers["importTime"] = end-start

tabelle ertellen, wie viele daten enthalten sind und für was verwendet werden

tableMetrics = PrettyTable()

tableMetrics.field_names = ["Data Set", "Total", "Training", "Validation"]

for name in settings.categoryNames:

 tableMetrics.add_row([name,

numbers["{}train".format(name)]+numbers["{}valid".format(name)],

numbers["{}train".format(name)], numbers["{}valid".format(name)]])

tableMetrics.add_row(["Total", numbers["total"], numbers["alltrain"], numbers["allvalid"]])

print(tableMetrics)

194

"""

888b 888 888

888b 888 888 .d8888b. 888

8888b 888 888

8888b 888 888 d88P Y88b 888

88888b 888 888

88888b 888 888 Y88b. 888

888Y88b 888 .d88b. 888 888 888d888 .d88b. 88888b. 8888b. 888 .d88b. .d8888b

888Y88b 888 .d88b. 888888 88888888 "Y888b. .d88b. 888888 888 888 88888b.

888 Y88b888 d8P Y8b 888 888 888P" d88""88b 888 "88b "88b 888 d8P Y8b 88K 888

Y88b888 d8P Y8b 888 d88P "Y88b. d8P Y8b 888 888 888 888 "88b

888 Y88888 88888888 888 888 888 888 888 888 888 .d888888 888 88888888 "Y8888b. 888

Y88888 88888888 888 d88P "888 88888888 888 888 888 888 888

888 Y8888 Y8b. Y88b 888 888 Y88..88P 888 888 888 888 888 Y8b. X88 888

Y8888 Y8b. Y88b. d88P Y88b d88P Y8b. Y88b. Y88b 888 888 d88P

888 Y888 "Y8888 "Y88888 888 "Y88P" 888 888 "Y888888 888 "Y8888 88888P' 888

Y888 "Y8888 "Y888 88888888 "Y8888P" "Y8888 "Y888 "Y88888 88888P"

888

888

888

"""

start = time.time()

print("\nsetting up neural net...")

print der netzwerk parameter

parsen der infile und input flags

for key in network.list():

 inputValue = getattr(args, key)

 value = network.getValue(key)

 if inputValue != None and inputValue != value:

 network.setValue(key, inputValue)

 print("\tread", key, "to", inputValue, "from flags")

 elif key in config['NETWORK']:

 readValue = config['NETWORK'][key].split(',') # parsen der infile

 # daten type entsprechend anpassen

 if key == "dropout":

 printList = list(map(float, readValue))

 network.setValue(key, printList)

 elif key == "actilin" or key == 'acticonv':

 newList = []

 printList = readValue

 for word in printList:

 newList.append(word.strip())

 network.setValue(key, newList)

 else:

 printList = list(map(int, readValue))

 network.setValue(key, printList)

 print("\tread", key, "to", printList, "from {}".format(args.infile))

 else:

 print("\tleft", key, "at", value, "from defaults")

network.test(numbers["numCategories"]) # netzwerk paramter anpassen, sodass sie zusammen

passen.

print("the network will have the following parameters:")

for key in network.list():

 print("\t", key, network.getValue(key))

net = pixelNet(linLayers=network.linLayer, dropout=network.dropout, actilin=network.actilin,

channels=network.channels, kernels=network.kernelSize, pads=network.padding,

acticonv=network.acticonv)

verlustfunktion und optimizer definieren

scheduler passt die lernrate über die epochen an

lossFunc = nn.CrossEntropyLoss()

print("using CrossEntropyLoss as loss function")

if settings.optim == 'AdaHessian':

 optimizer = Toptimizers.AdaHessian(net.parameters(), lr=settings.learnRate,

weight_decay=settings.weightDecay, eps=settings.eps, betas=(settings.beta[0],

settings.beta[1]), hessian_power=1.0)

195

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

elif settings.optim == 'SGD' or settings.optim == 'sgd':

 optimizer = optim.SGD(net.parameters(), lr=settings.learnRate, momentum=settings.momentum,

weight_decay=settings.weightDecay, dampening=settings.dampening, nesterov=settings.nesterov)

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

elif settings.optim == 'Adagrad' or settings.optim == 'adagrad':

 optimizer = optim.Adagrad(net.parameters(), lr=settings.learnRate,

lr_decay=settings.learnRateDecay, weight_decay=settings.weightDecay, eps=settings.eps)

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

elif settings.optim == 'Adadelta' or settings.optim == 'adadelta':

 optimizer = optim.Adadelta(net.parameters(), lr=settings.learnRate,

weight_decay=settings.weightDecay, eps=settings.eps, rho=settings.rho)

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

elif settings.optim == 'RMSprop' or settings.optim == 'rmsprop':

 optimizer = optim.RMSprop(net.parameters(), lr=settings.learnRate,

weight_decay=settings.weightDecay, eps=settings.eps, momentum=settings.momentum,

alpha=settings.alpha)

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

elif settings.optim == 'Adam' or settings.optim == 'adam':

 optimizer = optim.Adam(net.parameters(), lr=settings.learnRate,

weight_decay=settings.weightDecay, eps=settings.eps, betas=(settings.beta[0],

settings.beta[1]))

 print("set optimizer to {}".format(optimizer.__class__.__name__))

 correctOptim = True

else:

 optimizer = optim.SGD(net.parameters(), lr=settings.learnRate, momentum=settings.momentum,

weight_decay=settings.weightDecay, dampening=settings.dampening, nesterov=settings.nesterov)

 print("could not understand input, so set optimizer to SGD")

 correctOptim = False

if settings.scheduler == 'step':

 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=settings.stepSize,

gamma=settings.gamma)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

elif settings.scheduler == 'multistep':

 scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=settings.milestones,

gamma=settings.gamma)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

elif settings.scheduler == 'exponential':

 scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=settings.gamma)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

elif settings.scheduler == 'reduce':

 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

elif settings.scheduler == 'cycle':

 scheduler = optim.lr_scheduler.OneCycleLR(optimizer, settings.learnMax,

total_steps=settings.epochs, pct_start=settings.learnPeak/settings.epochs,

div_factor=settings.learnMax/settings.learnRate,

final_div_factor=settings.learnRate/settings.learnMin)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

elif settings.scheduler == 'cycles':

 if optimizer.__class__.__name__ == 'Adam' or optimizer.__class__.__name__ == 'Adahessian':

 scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=settings.learnRate,

max_lr=settings.learnMax, step_size_up=int(settings.epochs/settings.cycles),

gamma=settings.gamma, cycle_momentum=False)

 else:

 scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=settings.learnRate,

max_lr=settings.learnMax, step_size_up=int(settings.epochs/settings.cycles),

gamma=settings.gamma, cycle_momentum=True)

 print("set scheduler to {}".format(scheduler.__class__.__name__))

else:

 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=settings.stepSize,

gamma=settings.gamma)

 print("could not understand input, so set scheduler to StepLR")

netz auf die gpu kopieren, falls eine cuda karte vorhanden ist

if settings.device == "cuda":

 startGPU = time.time()

 print("\ncopying net to gpu...")

 net.to(settings.device)

 endGPU = time.time()

196

 numbers["gpuTime"] = endGPU-startGPU

numbers["setupTime"] = time.time()-start

torch.set_num_threads(settings.threads)

"""

.d8888b.

888 .d888 d8b d8b

d88P Y88b

888 d88P" Y8P Y8P

Y88b.

888 888

 "Y888b. 8888b. 888 888 .d88b. 88888b. 8888b.

88888b.d88b. .d88b. .d8888b .d88888 .d88b. 888888 888 88888b. 888 .d88b.

888d888 .d88b. 88888b.

 "Y88b. "88b 888 888 d8P Y8b 888 "88b "88b 888 "888 "88b d8P Y8b 88K

d88" 888 d8P Y8b 888 888 888 "88b 888 d8P Y8b 888P" d8P Y8b 888 "88b

 "888 .d888888 Y88 88P 88888888 888 888 .d888888 888 888 888 88888888 "Y8888b.

888 888 88888888 888 888 888 888 888 88888888 888 88888888 888 888

Y88b d88P 888 888 Y8bd8P Y8b. 888 888 888 888 888 888 888 Y8b. X88

Y88b 888 Y8b. 888 888 888 888 888 Y8b. 888 Y8b. 888 888

 "Y8888P" "Y888888 Y88P "Y8888 888 888 "Y888888 888 888 888 "Y8888 88888P'

"Y88888 "Y8888 888 888 888 888 888 "Y8888 888 "Y8888 888 888

"""

den namen erstellen unter welchem das model gespeichert wird

settings.modelName = network.saveName()

den namen erstellen unter welchem outputs gespeichert werden

if settings.outfile == "default name":

 settings.outfile = settings.saveName()

 if settings.device == "cuda":

 settings.outfile += "_cuda"

"""

88888888888 d8b d8b

 888 Y8P Y8P

 888

 888 888d888 8888b. 888 88888b. 888 88888b. .d88b.

 888 888P" "88b 888 888 "88b 888 888 "88b d88P"88b

 888 888 .d888888 888 888 888 888 888 888 888 888

 888 888 888 888 888 888 888 888 888 888 Y88b 888

 888 888 "Y888888 888 888 888 888 888 888 "Y88888

 888

 Y8b d88P

 "Y88P"

"""

hier wird geprüft ob es bereits ein model für das netzwerk gibt, falls ja, wird es geladen

if settings.retrain == False:

 print("\nlooking for model...")

 if Path("modelstate/{}--{}.pth".format(settings.modelName,

settings.categories)).is_file():

 trainNet = False

 start = time.time()

 print("loading model...")

 net.load_state_dict(torch.load("modelstate/{}--{}.pth".format(settings.modelName,

settings.categories)))

 net.to(settings.device)

 net.eval()

 numbers["loadTime"] = time.time()-start

 else:

 trainNet = True

 print("no model found")

else:

 trainNet = True

 print("\nno model loaded")

das netzwerk wird trainiert, falls ein statedict vorhanden ist oder falls "--retrain"

geschrieben wurden

if trainNet == True:

 fit(net, lossFunc, optimizer, scheduler, train, valid, settings.epochs,

settings.batchSize, numbers, settings.device)

 #plotTerminal(settings.epochs, numbers["losses"], numbers["confidence"],

numbers["accuracy"], numbers["validation"])

 # speichern des statedicts, mit namen des models, des verwendeten datensatzes

197

 torch.save(net.state_dict(), "modelstate/{}--{}.pth".format(settings.modelName,

settings.categories))

"""

888 888 888 d8b 888 d8b

888 888 888 Y8P 888 Y8P

888 888 888 888

Y88b d88P 8888b. 888 888 .d88888 888 .d88b. 888d888 888 888 88888b. .d88b.

 Y88b d88P "88b 888 888 d88" 888 888 d8P Y8b 888P" 888 888 888 "88b d88P"88b

 Y88o88P .d888888 888 888 888 888 888 88888888 888 888 888 888 888 888 888

 Y888P 888 888 888 888 Y88b 888 888 Y8b. 888 Y88b 888 888 888 Y88b 888

 Y8P "Y888888 888 888 "Y88888 888 "Y8888 888 "Y88888 888 888 "Y88888

 888

 Y8b d88P

 "Y88P"

"""

print("\nbeginn validation...")

net.eval() # netz in evaliierungs modus setzen

length = numbers["allvalid"]/(2*settings.batchSize)

bar = pb.PixelBar("validation:", max=length+1) # progressbar wird definiert

valstart = time.time()

with torch.no_grad():

 for inputs, labels in valid:

 if settings.device == "cuda":

 startGPU = time.time()

 inputs = inputs.to(settings.device)

 labels = labels.to(settings.device)

 endGPU = time.time()

 numbers["gpuTime"] += endGPU-startGPU

 guesses = net(inputs)

 outputs.allGuesses = torch.vstack((outputs.allGuesses, guesses))

 _, preds = torch.max(guesses, 1) # wie der name sagt passiert hier die vorhersage

 outputs.total += labels.shape[0] # zählen wie viel insgesamt geraten wurde

 outputs.correct += (preds == labels).sum().item() # sämtliche korrekte vorhersagen

summieren

 c = (preds == labels).squeeze()

 # hier erstelle ich die confusion matrix

 for i in range(numbers["numCategories"]):

 outputs.confMatrix[labels,i] += (preds == i).sum().item()

 label = labels[i]

 outputs.classCorrect[label] += c[i].item()

 outputs.classTotal[label] += 1

 bar.next()

outputs.adjustGuesses(numbers["numCategories"])

bar.finish()

"""

 d8888

888 .d8888b. 888 888 d8b 888

d8b 888

 d88888 888

d88P Y88b 888 888 Y8P 888 Y8P 888

 d88P888 888

Y88b. 888 888 888 888

 d88P 888 888 888 .d8888b 888 888 888 .d88b. 888d888 888888 888 888 88888b. .d88b.

"Y888b. 888888 8888b. 888888 888 .d8888b 888888 888 888 888

 d88P 888 888 888 88K 888 888 888 d8P Y8b 888P" 888 888 888 888 "88b

d88P"88b "Y88b. 888 "88b 888 888 88K 888 888 888 .88P

 d88P 888 888 888 "Y8888b. 888 888 888 88888888 888 888 888 888 888 888 888

888 "888 888 .d888888 888 888 "Y8888b. 888 888 888888K

 d8888888888 Y88b 888 X88 Y88b 888 d88P Y8b. 888 Y88b. Y88b 888 888 888 Y88b

888 d8b Y88b d88P Y88b. 888 888 Y88b. 888 X88 Y88b. 888 888 "88b

d88P 888 "Y88888 88888P' "Y8888888P" "Y8888 888 "Y888 "Y88888 888 888

"Y88888 88P "Y8888P" "Y888 "Y888888 "Y888 888 88888P' "Y888 888 888 888

888 8P

 Y8b

d88P "

 "Y88P"

"""

outputs.confMatrix = outputs.confMatrix.type(torch.LongTensor) # konvertieren des datentypes

des confusion matrix

198

numbers["validationTime"] = time.time()-valstart

Time = printTime(numbers["validationTime"])

print("validation finished, it took {}".format(Time))

print("")

priten der confusion matrix als tabelle

confTabel = plotConfTerminal(outputs.confMatrix, settings.categoryNames)

print(confTabel)

print('\nAccuracy of the network on the {} events: {:.2f}%\n'.format(numbers["allvalid"],

outputs.accuracy()))

true Positive, false Negative etc.

outputs.tptnfpfn(settings.categoryNames)

report enthält sensitivity, specificity, precision, f1score und matthew correllation

coeffecient

outputs.classReport(settings.categoryNames)

reportTable = plotReportTerminal(outputs.report, settings.categoryNames, outputs.scores)

print(reportTable)

print("")

for name in settings.categoryNames:

 print("category: ",name)

 print("\t- TP: ",outputs.TP[name].item())

 print("\t- TN: ",outputs.TN[name].item())

 print("\t- FP: ",outputs.FP[name].item())

 print("\t- FN: ",outputs.FN[name].item())

 for score in outputs.scores:

 print("\t- {0}: {1:.2f}".format(score, outputs.report[score][name]))

print("total accuracy:

{0:.2f}".format(outputs.confMatrix.diagonal().sum().item()/outputs.confMatrix.sum().item()))

endEnd = time.time()

if 'slowpions' in settings.categoryNames:

 everyCount = outputs.confMatrix.sum() - outputs.confMatrix[-1,-1]

 print('got {0:.2f}% of the slow pions\n'.format(100 * outputs.confMatrix[0,0]/everyCount))

 if settings.save == True:

 # resultat datei erstellen

 results = open('results', 'a')

 results.write('{}\t'.format(settings.outfile))

 results.write('{}\t'.format(outputs.accuracy()/100))

 results.write('{}\t'.format(outputs.confMatrix[0,0]/everyCount))

 results.write('{}\t'.format(outputs.report['precision']['slowpions']))

 results.write('{}\t'.format(outputs.report['matthew']['slowpions']))

 results.write('{}\n'.format(endEnd-startStart))

 results.close()

numbers["runTime"] = endEnd-startStart

print("the whole run took {}".format(printTime(numbers["runTime"])))

if settings.device == "cuda":

 print("copying to GPU took {}".format(printTime(numbers["gpuTime"])))

print("")

"""

 .d88888b. 888 888

d88P" "Y88b 888 888

888 888 888 888

888 888 888 888 888888 88888b. 888 888 888888 .d8888b

888 888 888 888 888 888 "88b 888 888 888 88K

888 888 888 888 888 888 888 888 888 888 "Y8888b.

Y88b. .d88P Y88b 888 Y88b. 888 d88P Y88b 888 Y88b. X88

 "Y88888P" "Y88888 "Y888 88888P" "Y88888 "Y888 88888P'

 888

 888

 888

"""

einfache methode und die outputs nicht zu speichern

das programm wird einfach abgebrochen

if settings.save == False:

 sys.exit()

print("saved all outputs under {}".format(settings.outfile))

barchats, die ausgeben wie viele daten für training und validierung verwendet werden

199

plotbars(settings.categoryNames, numbers, settings.outfile)

trainings kurven zu verlust und genauigkeit

if trainNet == True:

 plotLoss(["losses", "validation", "confidence", "accuracy"], settings.epochs, numbers,

settings.outfile)

 #plotLRLoss(numbers['learnRates'], numbers['losses'], numbers['validation'],

settings.outfile)

verschiedene auswertungs plots

plotConfMatrix(outputs.confMatrix, settings.categoryNames, settings.outfile)

plotClassErrors(outputs.confMatrix, settings.categoryNames, numbers, settings.outfile)

plotClasses(outputs.report, settings.categoryNames, outputs.scores, settings.outfile)

plotGuesses(outputs.allGuesses, settings.categoryNames, settings.outfile)

output log file schreiben, die ich für spätere auswertung verwenden möchte

file = open("outputs/{}.log".format(settings.outfile), "w")

file.write("------ Settings ------")

file.write("\nthis runs settings were:")

for key in settings.list():

 file.write("\n\t{}: {}".format(key, settings.getValue(key)))

file.write("\n\n------ Network ------")

file.write("\nthis run used: {}".format(net.__class__.__name__))

if correctOptim == True:

 file.write("\noptimizer was: {}".format(settings.optim))

else:

 file.write("\noptimizer was: {}".format(SGD))

file.write("\nlearn rate scheduler was: {}".format(settings.scheduler))

file.write("\nit ran on {}".format(settings.device))

file.write("\nthe networks parameters were:")

for key in network.list():

 file.write("\n\t{}: {}".format(key, network.getValue(key)))

if trainNet == True:

 file.write("\n\nthe network was trained from scratch")

else:

 file.write("\n\nit was a validation run")

file.write("\n\n------ Dataset ------")

file.write("\nthere are {} categories, namely:".format(numbers["numCategories"]))

for name in settings.categoryNames:

 file.write("\n- {} with {} data points".format(name,

numbers["{}train".format(name)]+numbers["{}valid".format(name)]))

 file.write("\n\t- {} points for training".format(numbers["{}train".format(name)]))

 file.write("\n\t- {} points for validation".format(numbers["{}valid".format(name)]))

file.write("\n\ntotal number for training:\t{}".format(numbers["alltrain"]))

file.write("\ntotal number for validation:\t{}".format(numbers["allvalid"]))

file.write("\n\n")

file.write(str(tableMetrics))

if trainNet == True:

 file.write("\n\n------ Training ------")

 file.write("\nhere follow traning statistics")

 for epoch in range(settings.epochs):

 file.write("\nepoch {}/{}:".format(epoch+1, settings.epochs))

 file.write("\n\tlearnRate: {}".format(numbers["learnRates"][epoch]))

 file.write("\n\tlosses: {}".format(numbers["losses"][epoch]))

 file.write("\n\tvalidation: {}".format(numbers["validation"][epoch]))

 file.write("\n\taccuracy: {}".format(numbers["accuracy"][epoch]))

 file.write("\n\tconfidence: {}".format(numbers["confidence"][epoch]))

file.write("\n\n------ Time ------")

file.write("\nloading data took \t \t {0:.2f}".format(numbers["importTime"]))

file.write("\nsetting up the network took \t {0:.2f}".format(numbers["setupTime"]))

if trainNet == True:

 file.write("\ntraining took \t \t \t {0:.2f}".format(numbers["trainingTime"]))

else:

 file.write("\nloading the model took \t \t {0:.2f}".format(numbers["loadTime"]))

file.write("\nvalidation took \t \t {0:.2f}".format(numbers["validationTime"]))

file.write("\nthe whole run took \t \t {0:.2f}".format(numbers["runTime"]))

if settings.device == "cuda":

 file.write("\ncopying to GPU took \t {0:.2f}".format(numbers["gpuTime"]))

file.write("\n\n------ Statistics ------")

200

file.write('\nAccuracy of the network on the {} events:

{:.2f}%'.format(numbers["allvalid"],outputs.accuracy()))

for i in range(numbers["numCategories"]):

 file.write('\n\nfor {}:'.format(settings.categoryNames[i]))

 file.write('\n- correct guesses: \t {}'.format(int(outputs.classCorrect[i])))

 file.write('\n- Accuracy: \t \t {:.2f}%'.format(100 * outputs.classCorrect[i] /

outputs.classTotal[i]))

if 'slowpions' in settings.categoryNames:

 file.write('\ngot {0:.2f}% of the slow pions\n'.format(100 * outputs.confMatrix[-1,-

1]/everyCount))

file.write("\n\n")

file.write(reportTable)

file.write("\n\n------ Confusion Matrix ------\n")

file.write(confTabel)

file.write("\n\n------ True, False, Positive, Negative ------")

for name in settings.categoryNames:

 file.write("\ncategory: {}".format(name))

 file.write("\n\t- TP: {}".format(outputs.TP[name].item()))

 file.write("\n\t- TN: {}".format(outputs.TN[name].item()))

 file.write("\n\t- FP: {}".format(outputs.FP[name].item()))

 file.write("\n\t- FN: {}".format(outputs.FN[name].item()))

 for score in outputs.scores:

 file.write("\n\t- {0}: {1:.2f}".format(score ,outputs.report[score][name]))

file.write("\ntotal accuracy:

{0:.2f}\n".format(outputs.confMatrix.diagonal().sum().item()/outputs.confMatrix.sum().item()))

if Path("{}".format(args.infile)).is_file():

 file.write('\n\n------ Input file ------\n')

 file.write('{}\n'.format(args.infile))

file.close()

And the helper code

import torch

import numpy as np

from matplotlib import pyplot as plt

from torch.utils.data import TensorDataset

from torch.utils.data import DataLoader

from torch import nn

import torch.nn.functional as F

from torch import optim

import time

import progress.bar as pb

import math

from ast import literal_eval

from pathlib import Path

from prettytable import PrettyTable

"""

8888888888 888 888 d8b

888 888 888 Y8P

888 888 888

8888888 888 888 88888b. 888 888 888888 888 .d88b. 88888b. .d88b. 88888b.

888 888 888 888 "88b 888 .88P 888 888 d88""88b 888 "88b d8P Y8b 888 "88b

888 888 888 888 888 888888K 888 888 888 888 888 888 88888888 888 888

888 Y88b 888 888 888 888 "88b Y88b. 888 Y88..88P 888 888 Y8b. 888 888

888 "Y88888 888 888 888 888 "Y888 888 "Y88P" 888 888 "Y8888 888 888

"""

diese funktion dient den daten typ des inputs zu überprüfen

def getType(input):

 try:

 return type(literal_eval(input))

 except (ValueError, SyntaxError):

 return str

passt die inputs der ersten linearen layers an die umstände an

def firstLinSize(channels, kernels, pads):

 size = 9

 for kern, pad, chan in zip(kernels, pads, channels):

 if kern > 0:

201

 size = (size-(kern-1)+2*pad)

 else:

 kern = -kern

 size = (size+(kern-1)+2*pad)

 if len(channels) > 0:

 return size**2*channels[-1]

 else:

 return size**2

netzwerk parameter vergleicheun und anpassen

def layerSize(master, slave, defaultFill):

 # auffüllen mit einem füllwert

 if len(master)-1 > len(slave):

 if len(slave) > 0:

 fillValue = slave[-1]

 else:

 fillValue = defaultFill

 while len(master)-1 > len(slave):

 slave.append(fillValue)

 print("filled {} to fit to {} with {}".format('slaveName', 'masterName', fillValue))

 return slave

 # falls es zu lang ist, wird es einfach abgeschnitten

 elif len(slave) > len(master)-1:

 lengthDiff = len(slave)-(len(master)-1)

 print("truncated {} to fit to {}".format('slave', 'master'))

 return slave[:lengthDiff+1]

 else:

 return slave

paddings and kernelSizes anpassen

def kernPadSize(kernels, padding):

 if len(kernels) > len(padding):

 while len(kernels) > len(padding):

 index = len(padding)

 kernSize = kernels[index]

 if kernSize > 0:

 padValue = int((kernSize-1)/2)

 else:

 padValue = 0

 padding.append(padValue)

 print("filled padding to fit to kernelSize")

 # kürzen von padding, falls es zu lang ist

 elif len(padding) > len(kernels):

 lengthDiff = len(padding)-len(kernels)

 padding = padding[:lengthDiff+2]

 print("truncated padding to fit to kernelSize")

 return padding

importier funktion

def importer(names, numbers, path, singlePixels):

 imported = {}

 numbers['allImported'] = []

 suffix = ''

 if singlePixels == True:

 suffix = '-nosinglepixels'

 print("\nimporting data ", end='')

 for name in names:

 if Path("{}/{}.pt".format(path, name+suffix)).is_file():

 imported[name] = torch.load("{}/{}.pt".format(path, name+suffix))

 print(".", end='')

 for name in names:

 numbers['allImported'].append(len(imported[name]))

 return imported

def importToTensor(imported, names, balanced, setFactor, kFold, batchSize, numbers):

 train = {}

 valid = {}

 if balanced == True:

 upperBound = int(min(numbers['allImported'])*setFactor)

 lowerBound = int(0.92*upperBound)

 # hier kürze ich den datensatz, einfach nur um das training zu beschleunigen

 # außerdem balanziere ich die kategorien auf eine ungefähr gleiche länge

 for i, name in enumerate(names):

202

 if balanced == False:

 upperBound = int(numbers['allImported'][i]*setFactor)

 lowerBound = int(0.92*upperBound)

 index = torch.randperm(len(imported[name]))

 length = torch.LongTensor(1).random_(lowerBound, upperBound).item()

 index = index[:length]

 imported[name] = imported[name][index]

 # den vollen datensatz in trainings-/validierungsdatensat trennen, nach kfold faktoren

 indices = torch.randperm(len(imported[name]))

 split = int(len(imported[name])/kFold)

 train[name], valid[name] = imported[name][split:], imported[name][:split]

 # tensoren für datensätze erstellen

 trainTensor = torch.vstack([train[name].float() for name in names])

 validTensor = torch.vstack([valid[name].float() for name in names])

 # labels für den jeweiligen datensatz erstellen

 trainLabel = torch.vstack([torch.full((len(train[name]),1),i) for i,name in

enumerate(names)]).flatten()

 validLabel = torch.vstack([torch.full((len(valid[name]),1),i) for i,name in

enumerate(names)]).flatten()

 for name in names:

 numbers["{}total".format(name)] = len(train[name])+len(valid[name])

 numbers["{}train".format(name)] = len(train[name])

 numbers["{}valid".format(name)] = len(valid[name])

 numbers["alltrain"] = len(trainTensor)

 numbers["allvalid"] = len(validTensor)

 numbers["total"] = len(trainTensor)+len(validTensor)

 # datensätze mit labels zusammenbringen, trainings datensatz mischen

 train = DataLoader(TensorDataset(trainTensor, trainLabel), batch_size=batchSize,

shuffle=True)

 valid = DataLoader(TensorDataset(validTensor, validLabel), batch_size=batchSize*2)

 return train, valid

rechnet zeiten in stunden, minuten um und printet es übersichtlicher

def printTime(time):

 hours = math.floor(time/(60*60))

 if hours >= 1:

 time = time % (60*60)

 minutes = math.floor(time/60)

 seconds = time % 60

 if hours >= 1 and minutes > 0:

 return "{} hours, {} minutes & {:.1f} seconds".format(hours,minutes,seconds)

 elif hours >= 1 and minutes == 0:

 return "{} hours, {:.1f} seconds".format(hours,seconds)

 elif minutes >= 1:

 return "{} minutes, {:.1f} seconds".format(minutes,seconds)

 else:

 return "{:.1f} seconds".format(seconds)

Fuktion zum erstellen des Model Names

def addStrings(seperator, numbers):

 modelSaveName = ""

 for i, number in enumerate(numbers):

 if i == 0:

 modelSaveName += seperator

 else:

 modelSaveName += '+'

 modelSaveName += str(number)

 return str(modelSaveName)

wie der name schon sagt

def accuracyFunc(outputs, labels):

 preds = torch.argmax(outputs, dim=1)

 return (preds == labels).float().mean()

nimmt nimmt durchschnitt der erratenen werte für batchsize

def confidenceFunc(outputs):

 m = nn.Softmax(dim=1)

 outputs = m(outputs)

 return outputs.max(1)[0].mean().item()

die fit funktion, nimmt das model/netzwerk, die verlust- und optimierungsfunktion entgegen

203

in numbers speichere ich alle zahlen wie epochs, batchsize, zeiten etc.

device ist selbst erklärend, cpu oder cuda:0

def fit(model, lossFunc, opt, scheduler, train, valid, epochs, batchSize, numbers, device):

 startTrain = time.time()

 losses = torch.tensor([], device=device)

 validation = torch.tensor([], device=device)

 confidence = torch.tensor([], device=device)

 accuracy = torch.tensor([], device=device)

 learnRates = []

 print("\nbeginn training...")

 timeEpoch = torch.tensor([])

 for epoch in range(epochs):

 startEpoch = time.time()

 length = numbers["alltrain"]/batchSize+numbers["allvalid"]/(2*batchSize)

 bar = pb.PixelBar("epoch {}/{}:".format(epoch+1, epochs), max=length+1) # das ist die

progressbar pro lern epoche

 # lern metrik pro epoche, die werte pro batch werden hier gespeichert und später

gemittelt

 lossepoch = torch.tensor([], device=device)

 vallossepoch = torch.tensor([], device=device)

 confepoch = torch.tensor([], device=device)

 accuepoch = torch.tensor([], device=device)

 model.train() # model/netzwerk in trainings modus setzen

 for inputs, labels in train:

 # daten auf graphikkarte kopieren

 if device == "cuda":

 startGPU = time.time()

 inputs = inputs.to(device)

 labels = labels.to(device)

 endGPU = time.time()

 numbers["gpuTime"] += endGPU-startGPU

 opt.zero_grad() # optimizer gradienten leeren

 guesses = model(inputs) # predictions machen

 # hier werden lehrnmetriken berechnet

 confi = confidenceFunc(guesses)

 confepoch = torch.cat((confepoch, torch.tensor([confi], device=device)))

 loss = lossFunc(guesses, labels)

 lossepoch = torch.cat((lossepoch, torch.tensor([loss.item()], device=device)))

 accu = accuracyFunc(guesses, labels)

 accuepoch = torch.cat((accuepoch, torch.tensor([accu.item()], device=device)))

 if opt.__class__.__name__ == 'Adahessian':

 loss.backward(create_graph=True) # verlust zurück propagieren

 else:

 loss.backward() # verlust zurück propagieren

 opt.step()

 bar.next()

 model.eval()

 with torch.no_grad():

 for inputs, labels in valid:

 if device == "cuda":

 startGPU = time.time()

 inputs = inputs.to(device)

 labels = labels.to(device)

 endGPU = time.time()

 numbers["gpuTime"] += endGPU-startGPU

 guesses = model(inputs)

 valloss = lossFunc(guesses, labels)

 vallossepoch = torch.cat((vallossepoch, torch.tensor([valloss.item()],

device=device)))

 bar.next()

 # metriken ...

 losses = torch.cat((losses, torch.tensor([lossepoch.mean().item()], device=device)))

 validation = torch.cat((validation, torch.tensor([vallossepoch.mean().item()],

device=device)))

 confidence = torch.cat((confidence, torch.tensor([confepoch.mean().item()],

device=device)))

 accuracy = torch.cat((accuracy, torch.tensor([accuepoch.mean().item()],

device=device)))

 timeEpoch = torch.cat((timeEpoch, torch.tensor([time.time()-startEpoch])))

204

 bar.finish()

 Time = printTime(time.time()-startEpoch)

 learnRRate = opt.state_dict()['param_groups'][0]['lr']

 learnRates.append(learnRRate)

 print("learnRate: {:.6f}, time: {}".format(learnRRate, Time))

 print("loss: {:.3f}, confidence: {:.3f}, accuracy: {:.3f}, validation:

{:.3f}".format(lossepoch.mean().item(), confepoch.mean().item(), accuepoch.mean().item(),

vallossepoch.mean().item()))

 if scheduler.__class__.__name__ == 'ReduceLROnPlateau':

 scheduler.step(valloss)

 else:

 scheduler.step()

 numbers["trainingTime"] = time.time()-startTrain

 Time = printTime(numbers["trainingTime"])

 print("\nfinished training, it took {}".format(Time))

 print("it took {} on average per epoch".format(printTime(timeEpoch.mean())))

 numbers["epochTime"] = timeEpoch.mean()

 numbers["losses"] = losses

 numbers["validation"] = validation

 numbers["confidence"] = confidence

 numbers["accuracy"] = accuracy

 numbers["learnRates"] = learnRates

"""

888 d8P 888

888 d8P 888

888 d8P 888

888d88K 888 8888b. .d8888b .d8888b .d88b. 88888b.

8888888b 888 "88b 88K 88K d8P Y8b 888 "88b

888 Y88b 888 .d888888 "Y8888b. "Y8888b. 88888888 888 888

888 Y88b 888 888 888 X88 X88 Y8b. 888 888

888 Y88b 888 "Y888888 88888P' 88888P' "Y8888 888 888

"""

diese klasse enthält sämtliche einstellungen bzgl. des trainings

class settingsClass():

 batchSize = 64

 learnRate = 0.1

 momentum = 0.9

 epochs = 50

 kFold = 4

 weightDecay = 0.

 scheduler = 'step'

 stepSize = 1

 gamma = 0.5

 milestones = [int(epochs/4), int(2*epochs/4), int(3*epochs/4)]

 learnMin = learnRate/10

 learnMax = learnRate*5

 learnPeak = int(epochs/4)

 cycles = 5

 nesterov = False

 rho = 0.9

 eps = 1e-6

 alpha = 0.99

 learnRateDecay = 0

 beta = [0.9, 0.999]

 dampening = 0

 datapath = 'data'

 nosinglepixels = False

 device = "cpu"

 threads = torch.get_num_threads()

 categories = "bb+dd+pi+pp+sp"

 categoryNames = []

 balanced = True

 setFactor = 0.65

 retrain = False

 save = False

 optim = "SGD"

 outfile = "default name"

 modelName = ""

205

 @staticmethod

 def list():

 return [s for s in dir(settingsClass) if not

 (s.startswith('__') or callable(getattr(settingsClass, s)))]

 def getValue(self, key):

 return getattr(self, key)

 def setValue(self, key, value):

 setattr(self, key, value)

 def saveName(self):

 return "{}_{}_{}_bs{}_kf{}_e{}_lr{}".format(self.modelName, self.optim,

self.categories, self.batchSize, self.kFold, self.epochs, self.learnRate)

 def catNames(self):

 categorySplit = self.categories.split('+')

 if "test" in categorySplit:

 self.categoryNames = ['test1', 'test2', 'test3', 'test4']

 self.categories = "test"

 else:

 if "bg" in categorySplit:

 self.categoryNames += ["background"]

 if "dd" in categorySplit:

 self.categoryNames += ["antideuterons"]

 if "pi" in categorySplit:

 self.categoryNames += ["pions"]

 if "pp" in categorySplit:

 self.categoryNames += ["protons"]

 if "sp" in categorySplit:

 self.categoryNames += ["slowpions"]

 if "bp" in categorySplit:

 self.categoryNames += ["boxedpions"]

 if "bb" in categorySplit:

 self.categoryNames += ["beambackground"]

 if "ev" in categorySplit:

 self.categoryNames += ["everythingelse"]

 if "kk" in categorySplit:

 self.categoryNames += ["kaons"]

 if "gg" in categorySplit:

 self.categoryNames += ["gammas"]

 if "el" in categorySplit:

 self.categoryNames += ["electrons"]

 if "sl" in categorySplit:

 self.categoryNames += ["slowelectrons"]

 if "mm" in categorySplit:

 self.categoryNames += ["muons"]

 if "lb" in categorySplit:

 self.categoryNames += ["lightBG"]

 if "mb" in categorySplit:

 self.categoryNames += ["mesonBG"]

 if "hb" in categorySplit:

 self.categoryNames += ["heavyBG"]

 if "ab" in categorySplit:

 self.categoryNames += ["allBG"]

 # prefix für output files wird hier generiert

 # ich mache das so, weil ich im prefix immer die selbe reihenfolge will

 categorySplit.sort()

 catNames = ''

 for i, name in enumerate(categorySplit):

 if i == 0:

 catNames += name

 else:

 catNames += "+"

 catNames += name

 self.categories = catNames

diese klasse enthält sämtliche einstellungen bzgl. des netzes

class networkClass():

 linLayer = [81,49,21,4]

 dropout = [0,0,0]

 channels = []

 kernelSize = []

 padding = []

 actilin = ["relu", "relu", "softmax"]

 acticonv = []

206

 @staticmethod

 def list():

 return [s for s in dir(networkClass) if not

 (s.startswith('__') or callable(getattr(networkClass, s)))]

 def getValue(self, key):

 return getattr(self, key)

 def setValue(self, key, value):

 setattr(self, key, value)

 def saveName(self):

 name = ""

 if len(self.kernelSize) > 0:

 name += addStrings("conv-", self.kernelSize)

 name += addStrings("-", self.padding)

 name += addStrings("-", self.channels)

 name += '--'

 name += addStrings("lin-", self.linLayer)

 name += addStrings("-", self.dropout)

 return name

 # testet ob die netzwerk parameter sinn ergeben

 def test(self, outputSize):

 print("testing network parameters, if they will fit...")

 # output layer hinzufügen

 if self.linLayer[-1] != outputSize:

 if self.linLayer[-1] > outputSize:

 self.linLayer.append(outputSize) # output layer hinzufügen

 else:

 self.linLayer[-1]=(outputSize) # breite des outputs anpassen

 print("added the output layer")

 # dropout an länge der linLayer anpassen

 # falls dropout zu kurz ist, wird es mit dem letzten wert aufgefüllt

 self.dropout = layerSize(self.linLayer, self.dropout, 0)

 # überprüfen der channels, der erste kanal muss immer 1 sein

 # die länge von channels muss mindestens 2 sein

 if len(self.channels) == 1:

 self.channels.insert(0,1)

 print("channels was too short and added the first channel")

 if len(self.channels) > 0:

 if self.channels[0] != 1:

 self.channels.insert(0,1)

 print("added a first channel")

 # nun passn wir kenelSize an channels an, wie wir es mit linLayer und dropout machten

 self.kernelSize = layerSize(self.channels, self.kernelSize, 3)

 # falls kernels angegeben sind, aber keine channels, dann werden 1er channel

aufgefüllt

 if len(self.channels) == 0 and len(self.kernelSize) != 0:

 self.channels = [1] * (len(self.kernelSize)+1)

 # anpassen von padding, sodass es mit kernelSize zusammenpasst

 # padding wird so angepasst, dass die größe des bilds sich NICHT ändert

 self.padding = kernPadSize(self.kernelSize, self.padding)

 # auffüllen der aktivierungs listen

 self.actilin = layerSize(self.linLayer, self.actilin, 'relu')

 self.acticonv = layerSize(self.channels, self.acticonv, 'relu')

 self.actilin[-1] = 'softmax' # der ausgabe layer soll keine aktivierung haben

 # anpassen des ersten linLayers

 firstLinLayer = firstLinSize(self.channels, self.kernelSize, self.padding)

 if len(self.channels) >= 1 and self.linLayer[0] != firstLinLayer:

 if all(element == self.linLayer[0] for element in self.linLayer[:-1]):

 for i in range(len(self.linLayer)-1):

 self.linLayer[i] = firstLinLayer

 print("adjusted the all linLayers to fit to convolutional layers")

 else:

 self.linLayer[0] = firstLinLayer

 print("adjusted the first linLayer to fit to convolutional layers")

 elif self.linLayer[0] != 81 and len(self.channels) == 0:

 self.linLayer.insert(0,81)

 print("added an input layer")

207

eine klasse die sämtliche outputs und post-processing enthält

class outputsClass():

 def __init__(self, numOutputs, device):

 self.total = 0

 self.classTotal = list(0. for i in range(numOutputs))

 self.correct = 0

 self.classCorrect = list(0. for i in range(numOutputs))

 self.classAccuracy = list(0. for i in range(numOutputs))

 self.confMatrix = torch.zeros((numOutputs, numOutputs), device=device)

 self.TP, self.TN, self.FP, self.FN = {}, {}, {}, {}

 self.sensitivity, self.specificity, self.precision, self.f1score, self.matthew = {},

{}, {}, {}, {}

 self.scores = ["sensitivity", "specificity", "precision", "f1score", "matthew"]

 self.reports = {}

 self.allGuesses = torch.zeros((1,numOutputs), device=device)

 def accuracy(self):

 return 100 * self.correct/self.total

 # berechnet TP, TN, FP und FN aus der confusion matrix

 def tptnfpfn(self, categoryNames):

 numCategories = len(categoryNames)

 for k, name in enumerate(categoryNames):

 for i in range(numCategories):

 for j in range(numCategories):

 if i == j:

 self.TP[name] = self.confMatrix[k,k]

 if i == k:

 self.FP[name] = self.confMatrix[:,k].sum()-self.confMatrix[k,k]

 if j == k:

 self.FN[name] = self.confMatrix[k].sum()-self.confMatrix[k,k]

 self.TN[name] = self.confMatrix[k].sum()+self.confMatrix[:,k].sum()-

2*self.confMatrix[k,k]

 # berechnet sensitivity etc aus TP, TN, FP, FN für jede klasse

 # reports in ein geschachteltes dictionary

 # -> erst die scores

 # --> dann categoryNames

 def classReport(self, categoryNames):

 for name in categoryNames:

 try:

 self.sensitivity[name] =

self.TP[name].item()/(self.TP[name].item()+self.FN[name].item())

 except ZeroDivisionError:

 self.sensitivity[name] = 0

 try:

 self.specificity[name] =

self.TN[name].item()/(self.TN[name].item()+self.FP[name].item())

 except ZeroDivisionError:

 self.specificity[name] = 0

 try:

 self.precision[name] =

self.TP[name].item()/(self.TP[name].item()+self.FP[name].item())

 except ZeroDivisionError:

 self.precision[name] = 0

 try:

 self.f1score[name] =

2*(self.sensitivity[name]*self.specificity[name])/(self.sensitivity[name]+self.specificity[nam

e])

 except ZeroDivisionError:

 self.f1score[name] = 0

 try:

 self.matthew[name] = (self.TP[name].item()*self.TN[name].item()-

self.FP[name].item()*self.FN[name].item())/math.sqrt((self.TP[name].item()+self.FP[name].item(

))*(self.TP[name].item()+self.FN[name].item())*(self.TN[name].item()+self.FP[name].item())*(se

lf.TN[name].item()+self.FN[name].item()))

 except ZeroDivisionError:

 self.matthew[name] = 0

 self.report = {"sensitivity": self.sensitivity, "specificity": self.specificity,

"precision": self.precision, "f1score": self.f1score, "matthew": self.matthew}

 def adjustGuesses(self, numOutputs):

 self.allGuesses = self.allGuesses[1:]

 self.allGuesses = torch.round(20*self.allGuesses)/20

208

"""

888b 888 888 888

8888b 888 888 888

88888b 888 888 888

888Y88b 888 .d88b. 888888 88888888 888 888 888 .d88b. 888d888 888 888

888 Y88b888 d8P Y8b 888 d88P 888 888 888 d8P Y8b 888P" 888 .88P

888 Y88888 88888888 888 d88P 888 888 888 88888888 888 888888K

888 Y8888 Y8b. Y88b. d88P Y88b 888 d88P Y8b. 888 888 "88b

888 Y888 "Y8888 "Y888 88888888 "Y8888888P" "Y8888 888 888 888

"""

eine funktion um flexibel die aktivierung zu wählen

def activator(activate):

 activation = nn.ModuleDict([

 ['lrelu', nn.LeakyReLU()],

 ['elu', nn.ELU()],

 ['relu', nn.ReLU()],

 ['rrelu', nn.RReLU()],

 ['sigi', nn.Sigmoid()],

 ['tanh', nn.Tanh()],

 ['id', nn.Identity()],

 ['softplus', nn.Softplus()],

 ['softmax', nn.Softmax(dim = 1)]

])

 return activation[activate]

hier definiere ich convolutional layer

eine Funktion zum erstellen von conv layern

def createConv(inChannels, outChannels, pad, activate, *args, **kwargs):

 print("created convolutional layer with {} inChannels, {} outChannels and activation

{}".format(inChannels, outChannels, activate))

 return nn.Sequential(

 nn.Conv2d(inChannels, outChannels, *args, **kwargs),

 nn.BatchNorm2d(outChannels),

 nn.ReplicationPad2d(pad),

 activator(activate)

)

erstelle conv-transposed layer

def createConvTranspose(inChannels, outChannels, pad, activate, *args, **kwargs):

 print("created convolutional transposed layer with {} inChannels, {} outChannels and

activation {}".format(inChannels, outChannels, activate))

 return nn.Sequential(

 nn.ConvTranspose2d(inChannels, outChannels, *args, **kwargs),

 nn.BatchNorm2d(outChannels),

 nn.ReplicationPad2d(pad),

 activator(activate)

)

Schrittweise Erstellung der conv layer

class myConv(nn.Module):

 def __init__(self, channels, kernels, pads, activate):

 super().__init__()

 layerBlock = []

 for kern, pad, inSize, outSize, acti in zip(kernels, pads, channels, channels[1:],

activate):

 if kern > 0:

 layerBlock.append(createConv(inSize, outSize, activate=acti, kernel_size=kern,

pad=pad))

 else:

 kern = -kern

 layerBlock.append(createConvTranspose(inSize, outSize, activate=acti,

kernel_size=kern, pad=pad))

 #self.layers = nn.ModuleList([createConv(inSize, outSize, activate=activate,

kernel_size=kern, pad=pad) for kern, pad, inSize, outSize in zip(kernels, pads, channels,

channels[1:])])

 self.layers = nn.Sequential(*layerBlock)

 def forward(self, x):

 x = x.view(-1, 1, 9, 9)

 for layer in self.layers:

 x = layer(x)

 return x

209

hier definiere ich meine linearen layer

eine Funktion zum erstellen von linearen layern

def createLinear(numInputs, numOutputs, drop, activate):

 print("created linear layer with {} inputs, {} outputs and activation

{}".format(numInputs, numOutputs, activate))

 return nn.Sequential(

 nn.Linear(numInputs, numOutputs),

 nn.BatchNorm1d(numOutputs),

 nn.Dropout(drop),

 activator(activate)

)

Schrittweise Erstellung der linaren layer

class myLinear(nn.Module):

 def __init__(self, linLayers, dropout, activate):

 super().__init__()

 layerBlock = []

 self.layers = nn.ModuleList([createLinear(inSize,outSize, drop, acti) for inSize,

outSize, drop, acti in zip(linLayers, linLayers[1:], dropout, activate)])

 for layer in self.layers:

 nn.init.xavier_uniform_(layer[0].weight)

 nn.init.zeros_(layer[0].bias)

 def forward(self, x):

 x = x.flatten(1)

 for layer in self.layers:

 x = layer(x)

 return x

das ist das eigentliche netz

hier wird alles zusammen gestellt, die conv und linearen layer

class pixelNet(nn.Module):

 def __init__(self, linLayers, dropout, actilin, channels, kernels, pads, acticonv):

 super().__init__()

 layerBlock = []

 # hier werden die conv layer erstellt

 if len(kernels) > 0:

 layerBlock.append(myConv(channels=channels, kernels=kernels, pads=pads,

activate=acticonv))

 # hier werden die linearen layer erstellt

 layerBlock.append(myLinear(linLayers=linLayers, dropout=dropout, activate=actilin))

 self.layers = nn.Sequential(*layerBlock)

 def forward(self, x):

 for layer in self.layers:

 x = layer(x)

 return x

"""

8888888b. 888 888

888 Y88b 888 888

888 888 888 888

888 d88P 888 .d88b. 888888 .d8888b

8888888P" 888 d88""88b 888 88K

888 888 888 888 888 "Y8888b.

888 888 Y88..88P Y88b. X88

888 888 "Y88P" "Y888 88888P'

"""

plotten wie viele daten in einem datensatz enthalten sind, wie viel für training und

validierung verwendet werden

save ist ein bool der festlegt ob die plots gespeichert werden sollen

fileSaveName ist der name unter dem gespeichert wird

def plotbars(categoryNames, numbers, fileSaveName):

 fig = plt.figure()

 plt.title("Number of data points per category")

 width = 0.3

 x = np.arange(len(categoryNames))

 plt.ylabel("Number of data points")

 plt.grid(which='both', axis='y', ls=':')

210

 plt.xticks(np.arange(len(categoryNames)), (categoryNames))

 plt.bar(x-width,[numbers["{}total".format(name)] for name in categoryNames], width=width,

label="total")

 plt.bar(x,[numbers["{}train".format(name)] for name in categoryNames], width=width,

label="train")

 plt.bar(x+width,[numbers["{}valid".format(name)] for name in categoryNames], width=width,

label="valid")

 plt.legend()

 fig.savefig("plots/dataSet-{}.png".format(fileSaveName))

wie der name sagt, plottet in einem gitter ein paar 9x9 daten

def previewPlot(categoryNames, train, batchSize):

 images, labels = next(iter(train))

 xsize = int(np.floor(math.sqrt(batchSize)))

 ysize = int(batchSize/xsize)

 fig, axes = plt.subplots(ysize,xsize, figsize=(10,10))

 k = 0

 for i in range(ysize):

 for j in range(xsize):

 axes[i,j].set_title(categoryNames[labels[k]])

 axes[i,j].imshow(images[k].reshape(9,9))

 k += 1

 fig.tight_layout()

 plt.show()

plottet die verlust etc funktionen nachdem trainingsprozess

save ist ein bool der festlegt ob die plots gespeichert werden sollen

fileSaveName ist der name unter dem gespeichert wird

ich weiß, dass diese funktion nicht besonders elegant gelöst ist

aber sie funktioniert... immerhin etwas

def plotLoss(titles, epochs, numbers, fileSaveName):

 x = np.linspace(0,epochs,epochs)

 ySize = int(np.floor(math.sqrt(len(titles))))

 xSize = int(len(titles)/ySize)

 while ySize*xSize < len(titles):

 ySize += 1

 fig, axes = plt.subplots(ySize,xSize, figsize=(10,10))

 fig.suptitle("Losses during training")

 if ySize == 1:

 for i in range(len(titles)):

 axes[i].plot(x,numbers[titles[i]].cpu())

 axes[i].grid(ls=':')

 axes[i].set_title(titles[i])

 axes[i].set_xlabel("epoch")

 axes[i].set_ylabel("value")

 else:

 k = 0

 for i in range(xSize):

 for j in range(ySize):

 axes[i,j].plot(x,numbers[titles[k]].cpu())

 axes[i,j].grid(ls=':')

 axes[i,j].set_title(titles[k])

 axes[i,j].set_xlabel("epoch")

 axes[i,j].set_ylabel("value")

 k += 1

 fig.tight_layout()

 fig.savefig("plots/losses-{}.png".format(fileSaveName))

def plotLRLoss(learnRate, trainLoss, validLoss, fileSaveName):

 fig, ax = plt.subplots()

 x = np.arange(len(learnRate))

 ierror = torch.full((len(x),), validLoss.min())

 ax2 = ax.twinx()

 ax.set_ylabel("Learn Rate")

 ax.set_xlabel('Epoch')

 ax2.set_ylabel("Losses")

 ax.grid(ls=':')

 ax.plot(x,learnRate, color="tab:red", label='Learn Rate')

 ax2.plot(x,trainLoss, color="tab:blue", label='Traing Loss')

 ax2.plot(x,validLoss, color="tab:green", label='Validation Loss')

 ax2.plot(x,ierror, color="tab:grey", ls='--', label='Instrictic Error')

 ax.legend()

 ax2.legend()

 #plt.show()

 fig.savefig("plots/lrloss-{}.png".format(fileSaveName))

211

ich bin mir recht sicher, dass ich die nächsten zwei funktionen zu einer kombinieren kann

diese und die nächste machen grob das selbe

die confusion matrix plottet die tatsächlichen klassen gegen die erratenen klassen

daraus kann man TP, FP, TN, FP und alles weitere ableiten

save ist ein bool der festlegt ob die plots gespeichert werden sollen

fileSaveName ist der name unter dem gespeichert wird

def plotConfMatrix(dataSet, categoryNames, fileSaveName):

 fig = plt.figure()

 plt.title('Confusion Matrix')

 plt.xlabel("Predicted")

 plt.ylabel("Classes")

 plt.yticks(np.arange(len(categoryNames)), (categoryNames))

 plt.xticks(np.arange(len(categoryNames)), (categoryNames), rotation=45)

 plt.imshow(dataSet.cpu(), cmap='Blues')

 plt.colorbar()

 threshold = dataSet.max()/2.

 for i in range(len(categoryNames)):

 for j in range(len(categoryNames)):

 plt.text(j, i, format(dataSet[i, j]), horizontalalignment="center", color="white"

if dataSet[i, j] > threshold else "black")

 plt.tight_layout()

 fig.savefig("plots/confMatrix-{}.png".format(fileSaveName))

plottet sensitivity etc. für jede klasse in einem übersichtichem diagramm

save ist ein bool der festlegt ob die plots gespeichert werden sollen

fileSaveName ist der name unter dem gespeichert wird

def plotClasses(report, categoryNames, scores, fileSaveName):

 fig = plt.figure()

 plt.title('Class Report')

 plt.xlabel("Score")

 plt.ylabel("Class")

 plt.yticks(np.arange(len(categoryNames)), (categoryNames))

 plt.xticks(np.arange(len(scores)), (scores), rotation=45)

 imfile = torch.zeros(len(categoryNames), len(scores))

 for i, name in enumerate(categoryNames):

 for j, score in enumerate(scores):

 imfile[i,j] = report[score][name]

 plt.imshow(imfile.cpu(), cmap='Reds')

 plt.colorbar()

 for i, name in enumerate(categoryNames):

 for j, score in enumerate(scores):

 plt.text(j,i, "{0:.2f}".format(report[score][name]), horizontalalignment="center",

color='white' if report[score][name] >= 0.7 else "black")

 plt.tight_layout()

 fig.savefig("plots/reportMatrix-{}.png".format(fileSaveName))

bar charts die nichts anderes als die confusion matrix noch einmal anders darstellt

es werden die klassen angezeigt und darüber in bars wie viele pro klasse für die klasse

erraten wurden

außerdem wird ein schwarzer strich angezeigt, der sagt wie viele daten für die valierung

verwendet wurden

save ist ein bool der festlegt ob die plots gespeichert werden sollen

fileSaveName ist der name unter dem gespeichert wird

def plotClassErrors(dataSet, categoryNames, numbers, fileSaveName):

 fig, ax = plt.subplots()

 plt.grid(which='both', axis='y', ls=':')

 offset = torch.zeros(len(categoryNames))

 target = torch.zeros(len(categoryNames))

 for i,name in enumerate(categoryNames):

 ax.bar(categoryNames, dataSet[i], label=name, bottom=offset, zorder=1)

 offset = offset + dataSet[i]

 target[i] = numbers["{}valid".format(name)]

 plt.scatter(categoryNames, target, marker='_', color='k', zorder=2)

 ax.set_ylabel("Number of Evenets")

 ax.set_xlabel("Classes")

 ax.set_title("Class Prediction Error")

 ax.legend()

 fig.savefig("plots/classErrors-{}.png".format(fileSaveName))

def plotGuesses(guesses, categoryNames, fileSaveName):

 fig = plt.figure()

 plt.title('Guesses pre Data Set')

 plt.xlabel('Output values')

 plt.ylabel('Number of data points')

212

 plt.grid(which='both', axis='y', ls=':')

 bins = np.around(np.arange(0,1.1,0.05),1)

 uniques = np.zeros((len(categoryNames),len(bins)))

 counts = np.zeros((len(categoryNames),len(bins)))

 colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:cyan']

 for i in range(guesses.shape[1]):

 for j in range(len(bins)):

 counts[i][j] = (guesses[:,i] == bins[j]).sum()

 for i in range(guesses.shape[1]):

 plt.bar(bins, counts[i], width=0.1, alpha=0.5, color=colors[i], edgecolor=colors[i],

label=categoryNames[i])

 plt.legend()

 fig.savefig("plots/numberGuesses-{}.png".format(fileSaveName))

diese funktion plottet die trainings kurven im terminal aus

ich mache das damit ich sehe wie das training lief, ohne das programm zu unterbrechen mit

extra fenstern

#def plotTerminal(epochs, loss, conf, accu, vali):

x = np.arange(epochs)

loss = np.array(loss)

conf = np.array(conf)

accu = np.array(accu)

vali = np.array(vali)

gp.plot((x, loss, dict(title='losses')),

(x, conf, dict(title='confidence')),

(x, accu, dict(title='accurracy')),

(x, vali, dict(title='validation')),

multiplot='title "training" layout 2,2', terminal = 'dumb 120,60', unset =

'grid')

confusion matrix als tabelle ums im terminal zu plotten

def plotConfTerminal(dataSet, categoryNames):

 table = PrettyTable()

 table.add_column("", categoryNames)

 length = len(categoryNames)

 for i in range(length):

 table.add_column(categoryNames[i], dataSet.transpose(0,1)[i].cpu().numpy())

 return str(table)

class report als tabelle ums im terminal zu plotten

def plotReportTerminal(report, categoryNames, scores):

 table = PrettyTable()

 table.add_column("", categoryNames)

 columns = np.zeros((len(scores), len(categoryNames)))

 for i, name in enumerate(categoryNames):

 for j, score in enumerate(scores):

 columns[j,i] = report[score][name]

 columns[j,i] = np.round(columns[j,i], 3)

 for i, score in enumerate(scores):

 table.add_column(score, columns[i])

 return(str(table))

The preprocessing Code

import torch

import numpy as np

from matplotlib import pyplot as plt

import sys

categoryNames = ["antideuterons", "pions", "protons", "slowpions", "boxedpions",

"beambackground", "electrons", "kaons", "gammas", "muons", "slowelectrons"]

imported, importedMore, indices, onepx = {}, {}, {}, {}

for name in categoryNames:

 numpyArr = np.loadtxt("data/{}.txt".format(name))

 imported[name] = torch.from_numpy(numpyArr)

 imported[name] = imported[name][:,2:-3]

for name in categoryNames:

 torch.save(imported[name], "data/{}.pt".format(name))

for name in categoryNames:

 imported[name] = torch.load("data/{}.pt".format(name))

213

 print(imported[name].shape)

combinedNames = ['heavyBG', 'lightBG', 'allBG', 'everything', 'mesonBG']

combinedData = {'heavyBG': torch.vstack([imported["antideuterons"],imported["pions"],

imported["protons"], imported["kaons"]]),

 'mesonBG': torch.vstack([imported["pions"], imported["kaons"]]),

 'lightBG': torch.vstack([imported["electrons"],imported["muons"],

imported["gammas"]]),

 'allBG': torch.vstack([imported["electrons"],imported["muons"], imported["gammas"],

imported["antideuterons"],imported["pions"], imported["protons"], imported["kaons"]]),

 'everything': torch.vstack([imported["electrons"],imported["muons"],

imported["gammas"], imported["antideuterons"],imported["pions"], imported["protons"],

imported["kaons"], imported["beambackground"]])

}

for name in combinedNames:

 Index = torch.randperm(len(combinedData[name]))

 combinedData[name] = combinedData[name][Index]

 torch.save(combinedData[name], "data/{}.pt".format(name))

total = 0

oneTotal = 0

for name in categoryNames:

 imported[name] = imported[name].reshape(len(imported[name]),9,9)

 nonZeros = torch.count_nonzero(imported[name], dim=(1,2))

 onepx[name] = torch.sum(nonZeros[nonZeros==1])

 indexOne = torch.where(nonZeros==1)

 indexMore = torch.where(nonZeros>1)

 importedMore[name] = imported[name][indexMore]

 total += len(imported[name])

 oneTotal += onepx[name]

 print(name, len(imported[name]), onepx[name])

 setMean = imported[name].mean(dim=0)

 setNorm = setMean - imported[name]

 index = setNorm.norm(dim=[1,2]).sort(descending=True)

 indices[name] = index

print('total', total, oneTotal)

for name in categoryNames:

 importedMore[name] = importedMore[name].reshape(len(importedMore[name]), 81)

 imported[name] = imported[name].reshape(len(imported[name]), 81)

 torch.save(importedMore[name], "data/{}-nosinglepixel.pt".format(name))

combinedDataMore = {'heavyBG':

torch.vstack([importedMore["antideuterons"],importedMore["pions"], importedMore["protons"],

importedMore["kaons"]]),

'mesonBG': torch.vstack([importedMore["pions"], importedMore["kaons"]]),

'lightBG': torch.vstack([importedMore["electrons"],importedMore["muons"],

importedMore["gammas"]]),

'allBG': torch.vstack([importedMore["electrons"],importedMore["muons"],

importedMore["gammas"], importedMore["antideuterons"],importedMore["pions"],

importedMore["protons"], importedMore["kaons"]]),

'everything': torch.vstack([importedMore["electrons"],importedMore["muons"],

importedMore["gammas"], importedMore["antideuterons"],importedMore["pions"],

importedMore["protons"], importedMore["kaons"], imported["beambackground"]])

}

for name in combinedNames:

 Index = torch.randperm(len(combinedDataMore[name]))

 combinedDataMore[name] = combinedDataMore[name][Index]

 torch.save(combinedDataMore[name], "data/{}-nosinglepixel.pt".format(name))

fig = plt.figure()

plt.title("Number of events per data set")

width = 0.5

x = np.arange(len(categoryNames))

plt.ylabel("Number of events")

plt.grid(which='both', axis='y', ls=':')

plt.xticks(np.arange(len(categoryNames)), (categoryNames), rotation=45)

plt.bar(x-width/4, [len(imported[name]) for name in categoryNames], width=width/2,

label='total')

plt.bar(x+width/4, [onepx[name] for name in categoryNames], width=width/2, label='one-pixel')

plt.legend()

plt.savefig('dataSet.png')

214

for name in categoryNames:

 importedMore[name] = importedMore[name].reshape(len(importedMore[name]), 9,9)

 imported[name] = imported[name].reshape(len(imported[name]), 9,9)

fig, axes = plt.subplots(len(categoryNames),7, figsize=(20,20))

fig.suptitle("preview")

for j, name in enumerate(categoryNames):

 axes[j,0].set_ylabel(name)

 for i in range(2):

 axes[j,i].tick_params(labelleft=False, labelbottom=False, left=False,

bottom=False)

 axes[j,i].imshow(imported[name][indices[name][1][i].item()])

 axes[j,i].set_title('Most deviating')

 for i in range(3):

 axes[j,i+2].imshow(imported[name][indices[name][1][int(len(imported[name])/2)].item(

)-1+i])

 axes[j,i+2].tick_params(labelleft=False, labelbottom=False, left=False,

bottom=False)

 axes[j,i+2].set_title('Mean deviation')

 for i in range(2):

 axes[j,i+5].tick_params(labelleft=False, labelbottom=False, left=False,

bottom=False)

 axes[j,i+5].imshow(imported[name][indices[name][1][-(i+1)].item()])

 axes[j,i+5].set_title('Least deviating')

plt.savefig('preview.png')

215

C. Code Explanation

This code needs the following libraries in order to run:

• PyTorch

• Numpy

• Matplotlib

• progress.bar / progress 1.5

• prettytable

• argparse

• configparser

It works rather simple, there is a default setting and one can execute the code by

running it with:

$python nn.py

Then the code runs the following setup:

• batchSize = 64

• learnRate = 0.1

• momentum = 0.9

• epochs = 50

• kFold = 4

• weightDecay = 0.

• a flat learning rate

• SGD as optimizer

• 65% of each data set will be used to train

• training will only happen, if no network model will be found

• single pixel events will be included

• no output will be saved

• it will run on the CPU, with maximum amount of threads

• Beam Background, Anti-Deuterons, Pions, Protons and Slow Pions will be used

to train

216

This configuration is declared within the settingsClass, which is located in the helper.py

file. The default network settings are in the networkClass, which is also located in the

helper.py, the default settings here are:

• input layer with 49 neurons and 0% dropout rate, ReLU activation

• hidden layer with 21 neurons and 0% dropout rate, ReLU activation

• output later with 4 neurons and 0% dropout rate, Softmax activation

In order to adjust these settings, one can use either CLI input flags, that is why argparse

is necessary or use an input file. An input file can be read by the following command:

$python nn.py -i name_of_input

One than has to specify an input file. I will provide a full list of input flags in a table

and illustrate how to use them with an example input file. Every input file consists of

two categories:

[SETTING]

and

[NETWORK]

Here follow the tags for the [SETTINGS] class:

Short Flag Flag Description

-i --infile define name of settings file

-o --outfile define name of output files

-b --batchSize sets the batchsize

-l --learnRate sets the learning rate

-m --momentum sets the momentum

-e --epochs sets the number of epochs

-k --kFold sets the of k-folds

 --optim define the optimizer used

-w --weightDecay sets the weight decay for

optimizer

217

 --scheduler define the scheduler used

-g --gamma factor by which learnRate

is reduced

-s --stepSize step size with which to

reduce learnRate

 --milestones sets the milestones at

which learning rate

should change

 --learnMax the maximum learnRate

for lambda scheduler

 --learnMin the minimum learnRate

for lambda scheduler

 --learnPeak the epoch of learnRate

peak for lambda scheduler

 --nesterov switches SGD to the

Nesterov variant

 --rho coefficient for running

average of squared

gradients

 --eps numerical stability

constant for optimizer

 --alpha smoothing constant for

RMSprop

 --learnRateDecay determines the falloff for

adagrad learnrate

 --beta runnung average gradient

coefficients for adam

 --datapath sets where the data to be

analyzed are stored

 --nosinglepixels exclude single pixel events

218

-sf --setFactor sets a factor for the total

amount of data per set

 --balanced should all data sets be

about the same size?

-d --device sets the processing device

{cpu, cuda}

-t --threads sets the number of

processes

-c --categories specify the train/valid

categories {dd, pi, pp, sp,

bp, bg, test}

 --retrain force to retrain the net

 --save save output data

And here follow the tags for [NETWORK] class:

Short Flag Flag Description

-ll --linLayer defines number of

neurons per layer

-do --dropout defines the dropout rate

per layer

-al --actilin defines the activation per

layer

-ch --channels defines the number of

channels per convolution

-ks --kernelSize defines the kernel size per

convolution

-pd --padding defines the padding size

per convolution

-ac --acticonv defines the activation per

convolution

219

If some settings are not given or would generate errors, the code will try to fix it and

print some information about the settings and adjustments. There is some caution

advised and one should be aware of settings changes.

An example input file:

[SETTINGS]

retrain = True

categories = sp+bb

outfile = 01convs9C3KFixed

batchSize = 128

setFactor = 0.35

balanced = True

epochs = 100

optim = adam

learnRate = 0.00001

momentum = 0.15

gamma = 1

eps = 1e-08

scheduler = step

learnMax = 0.00005

cycles = 5

nosinglepixels = True

[NETWORK]

dropout = 0, 0.5

actilin = relu

linLayer = 81, 81, 81, 81, 81, 2

acticonv = relu

kernelSize = 3

padding = 0

channels = 1, 9

220

After a successful run and if one specified, that outputs should be saved, then the code

will plot some graphs detailing the run and will save them to the directory plots. More

important is the run log file, which will be saved into the directory outputs.

There will be five plots per run. The loss curves, together with a confidence and training

accuracy plot. Confidence is the corresponding value of the guess. The networks output

is a list of floats, one float per category, and they are normalized to be used as

probability. Confidence is simply the largest number from this list. Next is the

confusion matrix and based on that a plot called class error, which is just a different

way representing the confusion matrix. Here each bar represents the guesses per

category, each color represents the actual class. The fourth plot is a report matrix, a

collection of different scores per category and it is based on the confusion matrix. The

last plot shows the winning guess value per category.

The output file lists the run settings, the network settings, some information about the

categories used in this run. Then comes a list of each epoch with the values:

• learnning rate

• training loss

• validation loss

• training accuracy

• confidence

And finally, how long the run took, some training statistics and the same scores as the

report plot, but as a table, are written in the output log. In the output log is also the

confusion matrix and a list of all scores per category.

	1 Introduction
	2 B-Physics at Belle II
	2.1 SuperKEKB Facility
	2.2 Belle II & Its Subdetectors
	2.2.1 The Subdetectors
	2.2.2 PXD – Pixel detector

	2.3 B-Physics at Belle II
	2.3.1 Reconstructing B mesons
	2.3.2 Slow Pions
	2.3.3 Tagging of B mesons

	2.4 Simulated data

	3 The Mathematics Section
	3.1 Gentle Introduction to Linear Algebra
	3.2 What’s so important about derivatives?

	4 Artificial Intelligence
	4.1 About Machine Learning
	4.1.1 Deep Learning
	4.1.2 Historical Overview
	4.1.3 Supervised Learning
	4.1.4 Unsupervised Learning
	4.1.5 Self-Supervised Learning
	4.1.6 Reinforced Learning
	4.1.7 Inverse Reinforcement Learning

	4.2 About Artificial Neuronal Networks
	4.2.1 Overfitting & Underfitting
	4.2.2 The Black Box Problem
	4.2.3 The Alignement Problem

	4.3 The Ingredients of a Neural Network
	4.3.1 Activation Functions
	4.3.2 Loss Function
	4.3.3 Optimizer & Gradient Descent
	4.3.4 What is an artificial neuron?
	4.3.5 Linear layer
	4.3.6 Convolutional layer
	4.3.7 Transposed Convolutional Layer
	4.3.8 Other Layer Types
	4.3.9 The Basic Working Principle of a Neural Network
	4.3.10 A List of Hyperparameters

	4.4 Python and PyTorch

	5 Statistics
	6 Theoretical Background
	6.1 The Standard Model
	6.1.1 What is Gauge Theory
	6.1.2 Left- and Right-Handedness
	6.1.3 CPT Theorem
	6.1.4 Weak Force

	6.2 CP Violation
	6.2.1 Some History
	6.2.2 A general approach to CP violation
	6.2.3 Three classes of CP violation

	6.3 CKM and Triangles
	6.3.1 CKM Matrix
	6.3.2 The Unitary Triangle

	7 Analysis
	7.1 Methodology
	7.2 Process
	7.2.1 Finding an Optimizer
	7.2.2 Adjusting Learning Rate
	7.2.3 Regularization through Drop Rates
	7.2.4 Testing for Batch Size
	7.2.5 Convolutional Layer – Finding Kernel Size
	7.2.6 Convolutional Layer – Finding a Channel Width
	7.2.7 Convolutional Layer – How many Convolutions?
	7.2.8 Transposed Convolutional Layer
	7.2.9 Learning Rate Schedulers
	7.2.10 Activation Functions

	7.3 Results
	7.3.1 Long-Term Tests
	7.3.2 Tests against Single Particles
	7.3.3 Multiclass Tests
	7.3.4 Tests against Larger Combinations
	7.3.5 The runs against Slow Electrons
	7.3.6 No Single Pixel Runs
	7.3.7 One Last Test Run

	8 Summary & Concusions
	8.1 What did we achieve?
	8.2 What needs to be done?

	9 Bibliography
	A. Additional Graphs
	Event Coordinate Distributions
	Additional Plots for Long-Term Test Runs
	Confusion Matrices for all Runs

	B. The Code Base
	The Main Code
	And the helper code
	The preprocessing Code

	C. Code Explanation

