
 
 

 

 

Employing Deep Learning to Find Slow 

Pions in the Pixel Detector in the Belle II 

Experiment 
 

Verwendung von Deep Learning um langsame Pionen im Pixel Detektor des 

Belle II Experiments zu finden 

 

Master Thesis 

by 
Johannes Bilk 

 

 

submitted at 
PD Dr. Sören Lange AR 

and 
Prof. Dr. Claudia Höhne 

 
 

II. Physics Institute 
Faculty 07 

Justus-Liebig-Universität Gießen 
 

 



2 

 

  



3 

 

Abstract (English) 

In the context of this thesis it was investigated whether the classification of Slow Pions 

at the pixel-detector of the Belle II experiment is feasible with methods of artificial 

intelligence. These Slow Pions experience a large energy loss in the pixel-detector and 

therefore do not reach the outer detector layers, consequently no charged tracks are 

available. In this thesis we try to identify these Slow Pions only on the basis of pattern 

recognition of pixel structures. 78% of all slow pions are found against a large 

background of other particles. The number of mislabels is 22%. 

Abstract (Deutsch) 

Im Rahmen dieser Thesis wurde untersucht ob mit Methoden der künstlichen 

Intelligenz die Klassifizierung von langsamen Pionen am Pixel-Detektor des Belle II 

Experiments durchführbar ist. Diese langsamen Pionen erfahren im Pixel-Detektor 

einen großen Energieverlust und erreichen daher nicht die äußeren Detektoren, 

folglich stehen dann keine geladenen spuren zur Verfügung. Im Rahmen dieser Thesis 

wird daher versucht die Identifikation dieser langsamen Pionen nur auf Basis von 

Mustererkennung von Pixelstrukturen durchzuführen. Es werden 78% aller 

langsamen Pionen gegen einen großen Hintergrund anderer Teilchen gefunden. Der 

Anteil an Mislabels liegt bei 22%. 
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1 Introduction 

Nothing surprises me; I’m a scientist. 

Dr. Henry Walton Jones Jr. 

The Standard Model (SM) is the current gold standard in particle physics, containing 

the electromagnetic, weak and strong forces and describing the interaction of all 

elementary particles. Still, it does not give us a complete picture of nature (1). For 

instance, it does not contain gravity, the weakest of the four fundamental forces, 

governing the cosmos. General Relativity, the theory describing gravity, was put in a 

mathematical framework by people like Albert Einstein2 and Georges Lemaître3. The 

latter corrected Einstein’s, self-admitted, biggest mistakes, which gave rise to the theory 

of the so-called Big Bang4. 

According to the SM matter and antimatter should have been created in equal amounts 

during the Big Bang, meaning that matter and antimatter is always created and 

annihilated in pairs. Manifestly the observable universe consists of 5% matter, 27% 

dark matter and 68% dark energy. This leads to the questions, where did all the 

antimatter go (1) (2) (3)? 

One possible explanation for this discrepancy is an asymmetric decay of matter and 

antimatter. This problem is related to conversation laws in physics and their violation, 

namely flavor universality violation, the baryon asymmetry problem and charge-

parity (CP) violation. In order to understand these phenomena, we need to investigate 

them and search for new physics (NP) beyond the SM. 

The current frontier of NP is the heavy flavor sector of the SM, in particular B-physics 

(4) (5) (6). B mesons occur in pairs (7), measuring life time asymmetries in B-decays will 

give insights into the CP asymmetry (8) and the Higgs5 sector (9). Together, in a cordial 

 
2 Albert Einstein (14 March 1879 - 18 April 1955) 
3 Georges Henri Joseph Édouard Lemaître (17 July 1894 - 20 June 1966) 
4 Fred Hoyle: “for it's an irrational process, and can't be described in scientific terms” 
5 Peter Ware Higgs (29 May 1929) 
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rivalry, BaBar and Belle showed the existence of CP violation in B systems (10). B-

physics is currently researched at SLAC, SuperKEKB and LHCb. 

There are numerus ways to study B-mesons and the one done here is through so called 

charged Slow Pions, which exhibit a low transversal momentum. These Slow Pions 

come from decays of charged excited D mesons called D* (11) (12), which come from 

beauty-anti-beauty quark pairs. CP violation in this sector has been predicted to be 

minuscule (>O(0.01)), CP violation above this level would lead to NP (13). 

Having an effective algorithm to find Slow Pions in a large data set will enable us to 

reconstruct B-decays more proficiently, thus it will give insights into NP beyond the SM. 

It is not humanly possible to analyze all the data and to look at every data point to infer 

the rules that created this very data point. We have no way of understanding and 

deducing conclusions from the data at hand, since we do not have nor do we need to 

have the ability to look at everything in its entirety. We let computers do the heavy 

lifting, in not just looking at the data and sorting it, which is the traditional way of 

analyzing data. We also rely on computers to figure out the rules distinguishing 

between different kind of events. This approach of computers figuring out the rules 

themselves is called Machine Learning (ML) and I employed this approach to find Slow 

Pions in a large data set of different kinds of particles. 

  



14 

 

2 B-Physics at Belle II 

If my calculations are correct, when this baby hits 88 miles per hour, you’re gonna see some 

serious stuff. 

Dr. Emmett Brown 

 

The discovery of the positron 1932 by Anderson6 (14) (15) is considered the beginning 

of particle physics. Anderson noticed tracks of the same curvature as of electrons in 

photo emulsion, while tracking cosmic rays. But these track bend in the other direction. 

The radius and direction of the tracks lead him to the conclusion that there must be 

other elementary particles of the same weight as electrons, but with the opposite 

charge. 

 

2.1 SuperKEKB Facility 

 
Figure 1: SuperKEKB Facility, consisting of a Positron- and Electron-ring, a damping ring and a linear 

accelerator and the Belle II decetor system 

Figure 1 shows a schematic layout of the SuperKEKB facility with every part labeled. 

This section is based on Accelerator design at SuperKEKB (15), Report on SuperKEKB 

phase 2 commissioning (16) and SuperKEKB Collider (17). SuperKEKB and its 

 
6 Carl David Anderson (3 September 1905 – 11 January 1991) 
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predecessor are asymmetric electron-positron ring collider. The KEKB accelerator ran 

from 1998 until 2010.  

The ring is 3 km long, the beam crossing angle is 83mrad in order to keep the beams 

separated. The blue ring in Figure 1 is the electron ring and has an energy of 7 GeV with 

a current of 2.6 A. It is also called high energy ring (HER). The Positron ring has an 

energy of 4 GeV, red in the figure, it has a beam current of 3.6 A. It is called low energy 

ring (LER). Thus, the center of mass energy is at the Υ(4𝑆) resonance at 10.58 GeV. The 

Υ are a series of resonances for electron-positron annihilation, it is shown in Figure 2. 

The difference in energies creates a Lorentz7  boost of 𝛽𝛾 = 0.28 , which allows the 

measurement of decay vertices, precise lifetimes and mixing parameters giving insight 

into CP violation. Furthermore, there is a linear accelerator (linac) and a damping ring 

(DR) for the positrons. The boost factor is just two thirds that of KEKB, but the beam 

pipe of SuperKEKB has a radius of 10 mm around the collision point. This is just two 

thirds of the beam pipe radius of KEKB. Addtionally, the first two layers of the detector 

are closer to the beam. These two facts compensate for the smaller boost. 

 

 
Figure 2: Cross section for electron-positron annihilation (19) 

The goal of the upgrade is a luminosity of 8 × 1035𝑐𝑚−2𝑠−1, which is forty times the peak 

luminosity of KEKB. The higher luminosity leads to twenty times larger backgrounds, 

 
7 Hendrik Lorentz (18 July 1853 – 4 February 1928) 
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which makes data analysis harder. Luminosity describes the ratio of frequency of 

detected events to cross-section. 

The increased luminosity will be attained by the nano-beam scheme, as was proposed 

by Raimondi, a depiction is shown in Figure 3. This means the beam emittance is 

decreased and the current is slightly raised, while having a large crossing angle 𝜗 at the 

collusion point. 

Given the Lorentz 8  factors 𝛾± , the beam sizes 𝜎𝑥,𝑦∗  at the collision point, the beam 

currents 𝐼±, a beam-beam tune shift 𝜉𝑦±∗  and two geometry correction factors 𝑅𝐿 and 𝑅𝜉𝑦 

one can calculate the luminosity by: 

𝐿 =
𝛾±
2𝑒𝑟𝑒

(1 +
𝜎𝑦
∗

𝜎𝑥
∗)(

𝐼±𝜉𝑦±

𝛽𝑦
∗ )(

𝑅𝐿
𝑅𝜉𝑦
) 

The + denotes positrons and – denotes electrons in the equation above. The vertical 

beta function 𝛽𝑦∗ , describes the thickness of the beam. The bulk of increase in luminosity 

will be achieved by minimizing this factor. 

 
Figure 3: The Nano-Beam Scheme 

 

2.2 Belle II & Its Subdetectors 

2.2.1 The Subdetectors 

This section is taken from the third chapter of The Belle II Physics Book (18) and from 

Belle II Technical Design Report (19). The Belle II detector is a system of multiply 

subdetectors. Figure 4 shows the Belle II detector system and how each part are situated 

in the whole gestalt. 

 
8 Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928) 

2ϑ

d
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Figure 4: Belle II with Subdetector Labels (18) 

Now following the subdetectors from the inner most to the outer most, as seen in Figure 

4, I will describe each very briefly. 

PXD The pixel detector (PXD) is the inner most detector and it consists of two 

layers of pixelated silicon sensors with 14 mm and 22mm radii around the 

beam pipe. It has 10M readout channels. 

SVD The silicon vertex detector (SVD) is made up of four layers of double-sided 

silicon strips with 39 mm, 88 mm, 104 mm and 135 mm radii. It has 224k 

readout channels and 1902 readout chips with a fast-shaping time of 

𝒪(50𝑛𝑠). Apart from measuring B decay vertices, it looks at decay channels 

containing D mesons and 𝜏 leptons. 

CDC The central drift chamber (CDC) has three main tasks, it reconstructs the 3D 

helix paths of charged particles and identifies them and uses this 

information to issue data taking triggers for the other detectors. Its inner 

radius is 160 mm and the outer radius is 1130 mm. It has 14k readout 

channels for 14.336 sense wires, made of tungsten and 42,240 field wires, 

made of aluminum. The chamber is filled with He-C2H6 gas. 

TOP The time-of-propagation (TOP) detector consists of 16 quartz glass bars and 

it has a time resolution of 100 ps. Each quartz bar is about 260 cm × 45 cm × 

2 cm big. It has 8k readout channels. Its purpose is to identify charged 



18 

 

particles and separate Kaons from Pions using Cherenkov9 radiation in the 

barrel region, the part surrounding CDC. 

ARICH The aerogel ring-imaging Cherenkov (ARICH) detector sits at the end of CDC 

in direction of the electron beam. Like TOP it is used to identify charged 

particles and to separate Kaons from Pions with an energy resolution of 0.4 

GeV up to 4 GeV. This detector has 78k readout channels. 

ECL The electromagnatic calorimeter (ECL) detects gamma rays and mainly 

separates Electrons from Pions and other hadronic matter. It is made up of 

8736 thallium doped cesium iodide crystals with a total weight of 43 tons. 

ECL is 3 m long and has an inner radius of 1.25 m. It has 8.7k read out 

channels. It measures the luminosity.  

KLM The outer most detector identifies 𝐾𝐿𝑜𝑛𝑔 and Muons (KLM). It is made up of 

alternating 14 iron plates and 15 active detector plats, each with a thickness 

of 4.7 cm. In this manner it can precisely measure hadronic showers. It has 

17k readout channels. 

 

The trigger (TRG) and data acquisition (DAQ) system are of further importance, 

especially in regards to the topic of this work. TRG needs to be efficient in order to fulfill 

limitations imposed by technical constraints of the DAQ. 

The trigger system is built up of several sub-triggers and a final-decision logic. If CDC 

measures at least three tacks and ECL sees larger energy deposition, their sub-triggers 

actuate, than the global decision logic makes a decision to issue a global trigger or not. 

In this manner background events, which are characterized by two or less tracks in 

CDC, will be suppressed. This system can actuate at a rate of 30 kHz. 

Upon an issued trigger by this hardware trigger (L1-trigger), the DAQ takes in the data 

and a software-based trigger system (HLT) will reduce the trigger rate down to 10 kHz 

in order to store the data. 

 

 
9 Pavel Alekseyevich Cherenkov (28 July 1904 – 6 January 1990) 
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2.2.2 PXD – Pixel detector 

 
Figure 5: SVD and PXD Subdetectors (20) 

This section is based on chapter three of The Belle II Physics Book (18), the fourth 

chapter from Belle II Technical Design Report (19) and Online-analysis of hits in the Belle-

II pixeldetector for separation of slow pions from background (7). Figure 5 shows how 

PXD is nested in SVD. The PXD is the closest to the beam and it is not included in the 

trigger system, this is due to the large number of pixels. 

The PXD consists of two depleted field effect transistors (DEPFET) silicon layers with a 

thickness of 75 μm. The inner layers, called modules, have a size of 1.5×6.8 cm2 and the 

outer ones have a size of 1.5×8.5 cm2, each pixel has a size of 0.0025 mm2. How the PXD 

models are arranged is depicted in Figure 6. The modules themselves have very little 

power draw and can be easily air cooled, but the readout electronics, will need to be 

actively cooled. 

The higher luminosity will lead to higher occupancy within the system. In order to deal 

with this, the number of pixels needs to be high. Every module has a resolution of 

256×768 pixels. The readout happens in a rolling shutter manner with 100 ns per pixel 

row. The total readout time is 20 microseconds. 
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Figure 6: The PXD Modules (40) 

The data generated by PXD can reach up to 28 Gbit/s overwhelming DAQ and the trigger 

system. The data rate coming from PXD is 1 MByte/event it is needs to be reduced by a 

factor of ten down to 100 kByte/event, this is in part a technical limitation of gigabit 

ethernet. What happens is that HLT extrapolates from the other detectors to issue a 

region of interest (ROI) for PXD. 

 

2.3 B-Physics at Belle II 

Красота спасёт мир 

The Idiot 

The b-quark was discovered 1977 at Fermilab by a group led by Leon Lederman10 (16) 

(17). They were studying muon-anti-muon pairs. The group found the so called Υ 

(Upsilon)11 resonance, which was made up of a new kind of quark-anti-quark pair. This 

new quark was dubbed ‘beauty’ or ‘b-quark’. The Υ resonance was already mentioned 

in an earlier section. It is shown in Figure 2. 

The B meson was discovered 1983 at CLEO (25). CLEO was an electron-positron 

accelerator operating at the Υ(4𝑆) resonance, the last peak in Figure 2. The research 

 
10 Leon Max Lederman (15 July 1922 – 3 October 2018) 
11 Internally they called it ‘Oops-Leon’ 
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team was looking for simple decay modes with D mesons and one or two charged Pions. 

They observed decays of B mesons, namely: 

𝐵− → 𝐷0𝜋− 

�̅�0 → 𝐷0𝜋+𝜋− 

�̅�0 → 𝐷∗+𝜋− 

𝐵− → 𝐷∗+𝜋−𝜋− 

This section is based on the chapters two, seven, eight and seventeen of The physics of 

the B factories (10) and chapters eight and nine of The Belle II Physics Book (18). 

The Υ(4𝑆) resonance produces B meson pairs without fragmentation particles, creating 

clean samples. The 𝐵0�̅�0 and 𝐵+𝐵− pairs are in the quantum state 1−−, thus the initial 

state is well known, allowing analysis methods like missing mass. Which we can 

calculate by this formular: 

𝑀𝑚𝑖𝑠𝑠
2 = (𝐸Υ(4S) −∑𝐸𝑛

𝑁𝑡

𝑛=1

)

2

−∑|𝑝𝑛|
2

𝑁𝑡

𝑛=1

 

 

Belle II looks at different kinds of decays. Here follow a few example decays. Figure 7 

shows a purely hadronic B decay. 

 
Figure 7: Example Feynman diagrams for hadronic B decays (26) 

Fully hadronic means, as can be seen in the figure, that all decay products are of 

hadronic matter. Figure 8 shows a fully leptonic decay. In these decays we have only 

leptons in the final states. 

 

 
Figure 8: Example Feynman diagrams for leptonic B decays (10) 
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Figure 9 shows a semi-leptonic decay, which decay through first order weak interaction 

and are governed by W bosons. These decays include hadrons and leptons in their final 

states. 

 

 
Figure 9: Example Feynman diagrams for semi-leptonic B decays (10) 

Finding new physics (NP) in leptonic and semi-leptonic decays will be hard, since it is 

heavily suppressed within the SM. Thus, is makes sense to look for these decays 

involving tau leptons, which might give insights into process outside of the SM. 

Figure 10 shows a Feynman diagram for BB oscillation. The boosted topology allows to 

measure the oscillation frequency of neutral B mesons with d-quarks. But the 

asymmetry is not enough for B mesons with s-quarks, which oscillate at higher 

frequencies. These kinds of decays are of interest, because of an asymmetry in 

oscillation. 

 
Figure 10: BB oscillation at lowest order diagram (10) 

Transitions of the kind 𝑏 → 𝑠  or 𝑏 → 𝑑  are called flavor changing neutral current 

(FCNC). It can be seen in the figure above. These decays proceed through so called 

penguin or box diagrams and currently only Belle II can measure these processes. 

Table 1 shows the for this work relevant particles, it gives some of the important 

characteristics. 
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Table 1: Tabulation of the for this work important particles  

 Symbols Quarks Mass / MeV Isospin Parity Lifetime / s 

Upsilon 4S 
Υ(4𝑆) 𝑏�̅� 9460.30 0 1- 

1.218×10-

20 

Neutral B 
𝐵0 �̅�0 𝑑�̅� �̅�𝑏 5279.61 ½ 0- 

1.520×10-

12 

Neutral D 
𝐷0 �̅�0 𝑐�̅� 𝑐̅𝑢 1864.84 ½ 0- 

4.101×10-

13 

Excited D 𝐷∗+ 𝐷∗− 𝑐�̅� 𝑐̅𝑑 2010.27 ½ 1- 6.9×10-21 

Pion 𝜋+ 𝜋− 𝑢�̅� �̅�𝑑 139.57 1- 1- 2.603×10-8 

 

2.3.1 Reconstructing B mesons 

This section is based on the eighth chapter of The Belle II Physics Book (18) and sevens 

chapter of The physics of the B factories (10). In this section I want to give some example 

decay chains for each of the aforementioned decays. Reconstruction happens through 

summation of all momenta of all final decay products. Thus, it is only possible thanks 

to momentum conversation. As was already mentioned Υ(4𝑆) predominately decays 

into two B mesons. We can take from Table 1, that these B mesons will always have the 

same mass. This means we need only to reconstruct one of the B mesons, since it makes 

up half of the center of mass energy. Which in turn is measured through the momenta 

of the final decay products. 

An example of a fully hadronic B meson reconstruction can be: 

𝐵0 → 𝐷∗−𝜋+ 

            ↪ �̅�0𝜋− 

                  ↪ 𝐾+𝜋−𝜋0 

                              ↪ 𝛾𝛾 

In leptonic and semi-leptonic reconstruction additional constraints are necessary, since 

they include neutrinos, which do not interact with the detector. An example decay is 

the following: 

𝐵0 → 𝐷∗−ℓ+𝜈 

            ↪ �̅�0𝜋− 
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                  ↪ 𝐾+𝜋−𝜋0 

                              ↪ 𝛾𝛾 

One uses the missing mass method, since the initial state is known and the final states 

are all measured. Given the signal B (𝐵𝑠𝑖𝑔) and a tag side B (𝐵𝑡𝑎𝑔) we can calculate the 

missing mass: 

𝑀𝑚𝑖𝑠𝑠
2 = (𝑝𝑒+𝑒− − 𝑝𝐵𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑝𝐵𝑡𝑎𝑔)

2
 

Under the assumption, that neutrinos are the only missing mass, one can exploit this 

method. There is one further method of reconstruction called partial B meson 

reconstruction, where not all final decay products need to be detected. This increases 

the reconstruction efficiency manifold. Decays where partial reconstruction is possible 

involve 𝐷∗ mesons. 

 

2.3.2 Slow Pions 

This section is based on the sixth and eighth chapter of The Belle II Physics Book (18), 

chapter eight of The physics of the B factories (10) and Online-analysis of hits in the Belle-

II pixeldetector for separation of slow pions from background (7). Pions where 

discovered 1947 by a group led by Cesar Lattes12 (29) (30). 

 
Figure 11: Slow Pions coming decays of BB pairs vs. D* 

 
12 Cesare Mansueto Giulio Lattes (11 July 1924 – 8 March 2005) 
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I mentioned earlier that some of the most important decays of B mesons include D 

mesons, especially 𝐷∗. These are excited D mesons. It is critical to properly tag so called 

Slow Pions, which is one of their decay products. Slow Pions can come from none 𝐷∗ 

decays, but they are regarded as background and thus I am not concerned about them. 

Slow Pions 𝜋𝑠𝑙𝑜𝑤
±  are characterized by a slow transverse momentum, see Figure 11. 

They are created nearly at rest in the 𝐷∗ frame, thus they continue its direction together 

with the 𝐷0. The decay chains I am looking at are: 

𝐵0 → 𝐷∗−𝑋+ 

            ↪ �̅�0𝜋𝑠𝑙𝑜𝑤
−  

�̅�0 → 𝐷∗+𝑋− 

            ↪ 𝐷0𝜋𝑠𝑙𝑜𝑤
+  

𝑋± can stand for any charged meson or a charged lepton and corresponding neutrino. 

A 𝐷∗ that decays below 60 MeV mainly decays into a 𝐷0 and a 𝜋𝑠𝑙𝑜𝑤
± . This means that 

most Slow Pions will not reach the outer layers. Figure 12 shows the first five layers of 

SVD and PXD and how far Pions with different energies reach into the detector. We see 

that most Pions get stuck in the lower layers. As was mentioned in the section about the 

Belle II detector, if CDC has two or less tracks for charge particles it will not trigger. It 

has been suggested to employ an artificial neural network as an online triggering 

system for PXD in order to find Slow Pions. 

 
Figure 12: Slow Pions in the first five layers of VXD 
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It is possible that the 𝐷0 decays futher into a Kaon. In that case one can correlate both 

mesons and improve the background suppression or rather the reconstruction of the 

decay channel. Another possibility is 𝐵0 → 𝐷∗𝑊±. The W boson than hadronizes into a 

fast Pion. The angle between the two Pions is large. 

 

2.3.3 Tagging of B mesons 

Here I want to make a simplified example of showing how to tag a B meson. Figure 13 

shows a semi-leptonic decay of a 𝐵−(𝑏, �̅�) into a negative lepton, the corresponding anti-

neutrino and a placeholder 𝑋 meson consisting of �̅� and 𝑞 quark. 

 
Figure 13: Semi-leptonic decay: 𝐵− → 𝑋ℓ−�̅�ℓ (10) 

The �̅� quark stays the same, while the 𝑏 quark decays into a 𝑞 quark through radiating 

a 𝑊− boson, which than decays into the leptons. We can detect the leptons and the 𝑋 

meson and then infer the flavor of the original 𝐵 meson. 

 

2.4 Simulated data 

The data coming from the PXD are represented by 9×9 matrices, which can be 

interpreted as small pictures, which are considerably smaller than the full PXD module 

resolution. These are the ROIs that were mentioned earlier; their coordinates are 

contained within every simulated event. Figure 14 shows the coordinate distribution 

for all Slow Pions events. The distributions for all other categories can be found in 

Appendix A. On the left of Figure 14 we see the norm, the two-layer structure of PXD 

can be easily seen. In the middle we see relatively even distribution of all angles. On 

the right we see the height distribution and can make out where the interaction point 

is in relation to PXD. 
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Figure 14: Coordinate Distributions for PXD events of Slow Pions 

In Figure 15 example events are shown for different particles and beam background. 

The data analyzed in this work has been created using Monte-Carlo simulation. 

 
Figure 15: PXD event data, the two left most columns are the most deviating events form the mean of each 

set, the three columns in the middle deviate from the mean event somewhat and the two right most are the 

least deviating from the mean event. Rows from the top: Anti-Deuterons, Pions, Protons, Slow Pions, box 

generated Slow Pions, Beam Background, Electrons, Kaons, Gammas, Muons and Slow Electrons. 
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The number of events per data set are: 

• Slow Pions (SP): 4.957.071 (1.757.348) 

• Pions (PI): 911.318 (484.946) 

• Anti-Deuterons (DD): 907.168 (365.706) 

• Beam Background (BB): 633.283 (142.011) 

• Protons (PP): 897.467 (437.956) 

• Boxed Slow Pions (BP): 2.911.598 (724.666) 

• Electrons (EL): 900.292 (516.605) 

• Kaons (KK): 891.969 (516.987) 

• Gammas (GA): 13.784 (5.990) 

• Muons (MM): 896.921 (527.039) 

• Slow Electrons (SL): 1.133.544 (627.185) 

with the number of one-pixel events in brackets. This amounts to 15.044.415 simulated 

events in total and 6.106.439 one-pixel event, where one-pixel events are events where 

only one pixel of the 81 pixels per events has a non-zero value. Figure 16 shows the 

total amount of data points per category and the amount of one-pixel events. It is quite 

obvious, that nearly half of the all normal Pions are one-pixel events and that Slow 

Pions make up one fifth of the entire data set, if we exclude Boxed Slow Pions. The data 

set for gammas is about only 1.5% in size of the others, this is due to the fact that 

gammas rarely interact with the pixel detector. 

 
Figure 16: Number of events per data set in total and one-pixel events 
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I combined these data sets together into four bigger data sets, one combines everything, 

except Slow Pions, Boxed Slow Pions and Slow Electrons, aptly called Everything (EV). 

Then there is a data set called Heavy Background (HB), consisting of all the particles 

made up of quarks, namely Pions, Anti-Deuterons, Protons and Kaons. The next one is 

called Medium or Meson Background (MB), consisting of Kaons and Pions and the last 

one is called Light or Lepton Background (LB). This last one is containing Electrons, 

Muons and Gammas, which are not leptons. 
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3 The Mathematics Section 

You keep using that word. I do not think it means what you think it means. 

Inigo Montoya 

3.1 Gentle Introduction to Linear Algebra 

This section is based on the lecture notes by Max Horn for Grundlagen der Algebra by 

Bernhard Mühlherr and on the book Mathematische Methoden in der Physik (24). 

 

Definition 1 (Scalar): 

A scalar is a single number. There are natural numbers, which start at zero and are 

infinitely countable. We can define Integers by introducing the concept of negative 

numbers. If we then take two integers and divide them by each other we get the rational 

numbers. And finally, there are real numbers, they are important, because without 

them there would be no Pi. I only mention this for completeness’s sake. 

 

Definition 2 (Vector): 

A vector is not a point in space, it is simply an element of a vector space. Vectors contain 

directional information and obey certain rules about vector operations and scalar 

multiplications and they are base depended. 

In this work it is sufficient to understand a vector as a column: 

�⃗� = (

𝑥1
⋮
𝑥𝑛
) 

and its dual vector as a row: 

�⃗� = (𝑦1 … 𝑦𝑛) 

 

Definition 3 (Scalar Product): 

Given a dual vector, we can define the scalar product, where a vector is mapped to a 

scalar: 

⟨�⃗�|�⃗�⟩ = ⟨(𝑦1 … 𝒚𝒏)| (

𝑥1
⋮
𝑥𝑛
)⟩ = �⃗� ⋅ �⃗� =∑𝑦𝑖𝑥𝑖

𝑛

𝑖=1

 

Scalar products are bilinear, meaning they are linear in both components. 

Definition 4 (Norm): 
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Every scalar product induces also a norm, which just means if we have a scalar product, 

getting a norm is an easy matter of transposing a vector and scalar producing it with 

itself: 

‖�⃗�‖ ≝ ⟨�⃗�𝑇|�⃗�⟩ 

A norm is understood to be a measure of length for a vector. 

 

Definition 5 (Matrix): 

The mathematical term here is a linear map, meaning there is a linear correspondence 

between input and output. A matrix is an element of the so-called linear group. Since 

we are only interested in concrete representations, a matrix is a quasi-table with n rows 

and m columns, it takes the form: 

𝑀 = (
𝑀11 ⋯ 𝑀1𝑛
⋮ ⋱ ⋮

𝑀𝑚1 ⋯ 𝑀𝑚𝑛

) 

Special kinds of matrices are diagonal matrices: 

𝑀𝑑𝑖𝑎𝑔 = (

𝑀11 0 … 0
0 𝑀22 …  
⋮ ⋮ ⋱  
0   𝑀𝑚𝑛

) 

The identity matrix is a special diagonal matrix, with only ones: 

𝐼𝑑 = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

) 

A unitary matrix is a square matrix with a size of 𝑛 × 𝑛 and is defined by: 

𝑈𝑇𝑈 = 𝐼𝑑 

In the last equation we would first need to define matrix multiplication. 

 

Definition 6 (Vector-Matrix Multiplication): 

Here we define how a matrix and a vector can be combined and what the resulting 

product is. A matrix stands on the left, a vector on the right. The length of the vector 

must be equal to the number of columns of the matrix. The result will again be a 

column vector. If the matrix stands right, then the vectors length must be equal to the 

number of rows, then we will get a row vector. 

 

An example will illustrate this: 
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𝑀�⃗� = (
𝑀11 ⋯ 𝑀1𝑛
⋮ ⋱ ⋮

𝑀𝑚1 ⋯ 𝑀𝑚𝑛

)(

𝑥1
⋮
𝑥𝑛
) =

(

 
 
∑ 𝑀1𝑖𝑥𝑖

𝑛

𝑖=1

⋮

∑ 𝑀𝑚𝑖𝑥𝑖
𝑛

𝑖=1 )

 
 

 

 

Definition 7 (Eigenvalue): 

The question is, can we simplify a matrix into a form where only the diagonal elements 

are non-zero. The answer is, for special matrices we can do that under the condition 

that all columns and rows are linear independent and that it is a square matrix, 

meaning 𝑛 = 𝑚. The defining equation for an eigenvalue 𝜆 then is: 

𝑀�⃗� = 𝜆�⃗� 

 

Definition 8 (Condition Number): 

This is a scalar given by the quotient of the smallest and largest eigenvalue: 

𝜅(𝑀) =
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛 

 

if 𝜅 is close to one, it means the matrix is well conditioned, if it is a large number it 

means the matrix is ill conditioned. For dynamic systems it means, that small changes 

to the system result is large changes in the outcome. 

 

Definition 9 (Matrix-Matrix Multiplication): 

Given two matrices A and B of sizes 𝑟 × 𝑚 and 𝑚× 𝑛 and the resulting matrix C of size 

𝑟 × 𝑛. Matrix vector multiplication is a special kind of matrix-matrix multiplication: 

(

𝑎11 … 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑟1 … 𝑎𝑟𝑚

) ⋅ (
𝑏11 … 𝑏1𝑛
⋮ ⋱ ⋮
𝑏𝑚1 … 𝑏𝑚𝑛

) =

(

 
 
𝑐11 =∑ 𝑎1𝑖𝑏𝑖1

𝑚

𝑖=1
… 𝑐1𝑛 =∑ 𝑎1𝑖𝑏𝑖𝑛

𝑚

𝑖=1

⋮ ⋱ ⋮

𝑐𝑟1 =∑ 𝑎𝑟𝑖𝑏𝑖1
𝑚

𝑖=1
… 𝑐𝑟𝑛 =∑ 𝑎𝑟𝑖𝑏𝑖𝑛

𝑚

𝑖=1 )

 
 

 

We notice that every element of the product is a scalar product of each row times 

column of matrices A and B. 

 

 

 

Definition 10 (Singular Value Decomposition): 
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Singular Value Decomposition can be done with any matrix, where a single matrix is 

decomposed into three matrices: 

𝑀 = 𝑈Σ𝑉𝑇 

Where M is a 𝑚× 𝑛 matrix and Σ is a square diagonal matrix of size 𝑟 × 𝑟 ≤ 𝑚𝑖𝑛(𝑚, 𝑛). 

U and V are unitary matrices of size 𝑚 × 𝑟 and 𝑛 × 𝑟 respectively. 

 

Definition 11 (Matrix Inversion): 

Matrix Inversion can only be done with square matrices where every column and row 

are linear independent. Given a 𝑛 × 𝑛 matrix M, the inverse matrix 𝑀−1 is given by: 

𝑀 ⋅ 𝑀−1 = 𝐼𝑑 = 𝑀−1𝑀 

This gives us some understanding what a unitary matrix is, it is a matrix where the 

transposed matrix is equal to its inverse. 

 

Definition 12 (Tensor): 

A tensor is a multi linear mapping. In this work it is enough to understand them as 

multi-dimensional matrices with several indices13 , like 𝑇𝑖𝑗𝑘  or 𝑇𝑖𝑗𝑘 ; I just wanted to 

make it clear, that more is a play, mathematically speaking. In Figure 17 is an 

illustration of a tensor to given intuition what a tensor is, this is a special tensor called 

full anti symmetric tensor. 

 
Figure 17: Illustration of a tensor (25) 

 

 

 
13 For some inexplicable reason physics love indices. 
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3.2 What’s so important about derivatives? 

The dark side of the Force is a pathway to many abilities some consider to be unnatural. 

Chancellor Palpatine 

 

This section is based on the afformentioned book Mathematische Methoden in der 

Physik and Mathematik für Physiker (26). 

 

Definition 13 (Continues Function): 

A continues function is colloquial speaking a function without gaps. The technical 

definition is: a function f is called continuous, if and only if for every 𝜀 > 0 exits a 𝛿 > 0, 

such that: 

|𝑓(𝑥) − 𝑓(𝑎)| < 𝜀 ∀ 𝑥 ∈ 𝐼 𝑤𝑖𝑡ℎ |𝑥 − 𝑎| < 𝛿 

 

 
Figure 18: A continues function 

Definition 14 (Derivative): 

A derivative is defined point wise. The derivative of  𝑓  in 𝑥0 is given by: 

𝑓′(𝑥0) ≔ 𝑙𝑖𝑚
𝐼∋𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 −  𝑥0
 

We call f’(x0) the derivative of f in x0, we write: 

𝑓′(𝑥0) =
𝑑

𝑑𝑥
𝑓(𝑥0) 
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Figure 19: A differentiable function 

Figure 18 shows a continues but not a differentiable function and Figure 19 shows a 

differentiable and continues function. Left of 0 in Figure 18 the function can be 

characterized as monotonously decreasing function and right of 0 it is a monotonously 

increasing function. 

 

What happens at the roots of derivatives? The black, solid function Figure 19 has 

two curious points, at -1 and +1. These points coincide with the roots of the dashed, grey 

curve in the figure. What happens here is that the dashed function is the derivative of 

the solid curve, as was defined above and roots of derivatives mark out special points 

on their respective function. These points are called extrema. Taking the derivative of 

the derivative will further characterize these points. If this second derivative is 

negative, meaning the first derivative is continuously decreasing, then the function has 

a maximum. If the inverse is true, then the function has a minimum. If neither is true, 

we speak of a saddle point. 

 

What is the Chain Rule? Given two differentiable functions 𝑔: 𝐼 → 𝐽 and 𝑓: 𝐽 → 𝑅 with 

𝑦0 = 𝑔(𝑥0),  then the derivative of composite function is: 

(𝑓 ∘ 𝑔)′(𝑥0) = 𝑓
′ (𝑦0)⏟
𝑔(𝑥𝑜)

 ⋅ 𝑔′(𝑥0) 

we write: 

𝑑

𝑑𝑥
𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥)) ⋅ 𝑔′(𝑥) 

𝑔′(𝑥) is called the inner derivative and 𝑓′(𝑦0) is called the outer derivative. 
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Definition 15 (Partial Derivative): 

Let f(x1, x2, …, xi, …, xn) be multivariable function, then we define that partial derivative 

with respect to xi, i between 1 and n, as: 

𝑓𝑥𝑖 (𝑥1, 𝑥2,… , 𝑥𝑖 , … , 𝑥𝑛) =
𝜕𝑓

𝜕𝑥𝑖
 

Definition 16 (Nabla): 

Nabla is multi-dimensional differential operator, usually represented as a vector: 

∇⃗⃗⃗≝

(

 
 

𝜕

𝜕𝑥1
⋮
𝜕

𝜕𝑥𝑛)

 
 

 

What is a gradient? Given a function f: ℝn → ℝ, the gradient of it is defined as: 

𝛻𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =

(

 
 
 
 
 

𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2
⋮
𝜕𝑓

𝜕𝑥𝑛)

 
 
 
 
 

 

 

Definition 17 (Jacobi Matrix): 

Given a function f: ℝn → ℝm, the Jacobi matrix of it is defined as: 

𝐽𝑓 ≝  

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛 

𝜕𝑓2
𝜕𝑥1
⋮

⋱ ⋮

𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛)
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Definition 18 (Hessian Matrix): 

Given a function f: ℝn → ℝ, the Hessian matrix of it is defined as: 

𝐻𝑓 ≝  

(

 
 
 
 
 

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1
⋮

⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥𝑛
2 )

 
 
 
 
 

 

 

Thanks to Schwarzes Theorem we only need to calculate the diagonal and either the 

lower left or upper write half of the Hessian, since second derivatives are symmetric, 

meaning: 

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
 

 

What is a Lagrangian14? The idea is to minimize the action or energy while moving 

from a fixed starting point to a fixed end point. This is done infinitesimal variation on 

a path between the two points until a minimum is found. The definition is given by: 

𝑆[𝑥] = ∫ ℒ(𝑥(𝑡), �̇�(𝑡), 𝑡)𝑑𝑡

𝑡2

𝑡1

 

where ℒ(𝑥(𝑡), �̇�(𝑡), 𝑡) is the Lagrangian. The 𝑥(𝑡) which minimizes 𝑆[𝑥] is given by: 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝑥
= 0 

The dot indicates a time derivative.  

 
14 Giuseppe Luigi Lagrangia (25 January 1736 – 10 April 1813) 
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4 Artificial Intelligence 

Þægiattv, vǫlva!  

þik vil ek fregna,  

vnz alkvnna,  

vil ec ænn vita 

Óðinn 

4.1 About Machine Learning 

Machine Learning (ML) is a general and broad term applied to all kinds of computer 

analysis application in which computers learn the analysis parameters themselves. 

Figure 20 is a depiction of how to think about ML, above we see the traditional 

approach to computer analysis of data, below the ML approach. In the traditional 

approach data and rules are used as input to get answers. In ML we try to extract the 

rules, but only implicitly and not explicitly, since they are not of interest. (27) (28) 

 
Figure 20: Illustration on machine learning (27) 

 

Machine Learning has been employed in particle and high energy physics since the 

1990s (29) (30). It has been applied as a real time, online trigging system and 

successfully in offline reconstruction of data (31). 

There are several subdivisions within Machine Learning. Canonically there are three 

branches and sometimes a fourth one, namely supervised, unsupervised, reinforced 

and self-supervised machine learning (28) (27) (32). Relative recently appeared also a 

new variant called inverse reinforcement learning (33). I will summarize their 
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characteristics here based on these three books Deep learning with Python by Francois 

Chollet, Deep Learning by Ian Goodfellow and grokking Deep Learning by Andrew W. 

Trask. 

 

4.1.1 Deep Learning 

 
Figure 21: Nestedness of Machine Learning (27), (32), (28) 

Deep Learning is the newest and current term for a specific kind of Artificial 

Intelligence or Machine Learning systems. The descriptor deep is a reference to the 

numerous amounts of parameters this kind of Machine Learning exibits. Figure 21 

shows the relation between the different fields of computer implemented Artificial 

Intelligence. Where Deep Learning is a special case of Artificial Intelligence and ML. 

 

4.1.2 Historical Overview 

Deep Learning, or as it was known during its early years Cybernetics, has its beginning 

in the 1940s. Ever since then it waxed and waned in popularity over the decades (28). 

It was inspired by biological neurons (34) and based on mathematical models to 

describe how neurological systems learn (28). Machine Learning exists in its modern 

form since the late 1970s and had a resurgence in recent decades, starting in the early 

2000s (28) as computational power became strong enough. 

The architecture of the first networks was similar to what we have nowadays, but the 

weights of each neuron had to be adjusted by hand. It only functioned as a binary 

categorizer. Just a decade later in the late 1950s the perceptron became the first self-
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adjusting model. An integral part of Machine Learning known as stochastic gradient 

decent was what made the weight adjustment of a model called adaptive linear element 

(ADALINE) possible. (28) 

The second wave of Deep Learning came about in the 1980s due to the advancements 

in computational power. Its name then changed to connectionism or parallel distributed 

processing. A key insight was to break up each problem into small parts, which together 

can solve more complex problems. This trend lasted until predictions made by 

researches about Machine Learning did not come true in the mid 1990s. (28) 

Today neuroscience remains an inspiration for the development of artificial neural 

networks and led to the development of convolutional neural networks for image 

recognition (27). 

 

4.1.3 Supervised Learning 

This is probably the most common form of Machine Learning and its prime example 

are artificial neural networks, such as the one I employ in this work. In supervised 

learning we have a data set with labels or targets, the algorithm is running over this 

prelabeled dataset trying to make a prediction. This prediction then is compared to the 

target and based on how correct or wrong the machine performed, it adjusts the 

parameters of the algorithm to make better predictions. This form of Machine Learning 

is employed in written or spoken language recognition, language translation and image 

classification.  

 

4.1.4 Unsupervised Learning 

The classic example of unsupervised learning is a self-organizing map. Here a 

computer is not given any labels or targets, but instead is supposed to find the topology 

of the input itself. Meaning the algorithm tries to find clusters or groupings based on 

the features of a given data set. It is mainly employed in compression, reduction of 

dimensionality or image denoising. 
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4.1.5 Self-Supervised Learning 

This category is often subsumed by either supervised or unsupervised learning, since 

it is very similar to both of them. Here a computer is given a data set without any labels, 

but it generates the labels itself. It is a kind of supervised learning, but without human 

intervention, still it retains the characteristics of supervised learning, such as making 

a prediction based on past data. An example for self-supervised lerarning are 

autodecoders. 

 

4.1.6 Reinforced Learning 

This is still a developing branch of Machine Learning. Here we put an agent in an arena 

and set up rewards and punishments for certain actions. It is easier to understand with 

an example where it is employed. Reinforced learning is used to train computers at 

playing games, be it video games, Chess or Go and other board games. So far, its scope 

of application is rather limited. 

On a side note, I would like to mention the Frame Problem in this context. The easiest 

description is, that it is not possible to write out in closed form all equations governing 

the non-consequences of actions by an agent in an arena. Furthermore, the search 

space of all possible interactions, for example threads to the agent, is combinatorial 

explosive. Meaning an agent would have to check the probability of an infinitude of 

possible problems at every step. This is closely related to the subject of relevance 

realization. (35) (36) 

 

4.1.7 Inverse Reinforcement Learning 

Inverse reinforcement learning takes inspiration from how children learn. Instead of 

directly instilling behavior, rules or rewards and punishments, machines are supposed 

to observe humans and imitate their behavior. (33) 
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4.2 About Artificial Neuronal Networks 

4.2.1 Overfitting & Underfitting 

In ML it is important to solve a given problem sufficiently and not to optimize a network 

too stringent on the data set in order not to lose its generality. Optimal in the sense of 

performing an analysis on the training data set without making mistakes and general 

in the sense of making the least number of mistakes on a test data set (27). 

We can define this with understanding two terms central to evaluate a neural network. 

Given the error on a training set, the error on the test set and the difference between 

these error values, we can define underfitting as (28): 

 not minimizing the error on the training set 

and overfitting as (28): 

 not minimizing the difference between training and test error. 

 

 
Figure 22: Illustration of under- and overfitting (37) 

The processes of under- and overfitting can be understood from Figure 22, on the left 

we see underfitting in action, where we try to fit a sample with a linear function. On 

the right we see overfitting in action, where every data point is hit relatively well, but 

this fit will not be able to accommodate more data points, as they will fall far away 

from the fit curve. In the middle we see an optimal fit, as the error is relatively low and 

still new points will fall relatively close to the curve. 

Overfitting happens when one trains on a too small data set, whereas underfitting 

happens, when the the network is trained too short and/or on a too small data set (28) 

(27). 
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4.2.2 The Black Box Problem 

As already mentioned above, we only know the rules of analysis implicitly, if at all in 

any capacity. Hence the black box problem refers to the fact, that we do not actually 

know how a neural network solves a concrete problem. That does not mean that we do 

not understand the principles at work, but the whole process of learning is happening 

in a completely transparent manner. Put in another manner, we can understand every 

step, but understanding the neural network taken together becomes impossible, 

because of the number of parameters. (33) 

 

4.2.3 The Alignement Problem 

Und nun komm, du alter Besen! 

Nimm die schlechten Lumpenhüllen; 

Bist schon lange Knecht gewesen; 

Nun erfülle meinen Willen! 

Auf zwei Beinen stehe, 

Oben sei ein Kopf, 

Eile nun und gehe 

mit dem Wassertopf! 

The Sorcerer's Apprentice 

As Machine Learning grows in power, complexity and applicability, one inherent 

problem is becoming more and more apparent. We give a machine a set of problems, 

or an arena to act in, and a set of instructions with rewards and punishments. These 

machines start tackling the problems with our guidelines and after a while we will 

discover, that despite the directives we have given it, the machine is not doing what we 

wanted it to do. There occurs a mismatch between our proposed goals and the 

consequences of the incentive structure we set up. This problem is called The Alignment 

Problem and it has far reaching implications in many fields of Machine Learning. (33) 

 

4.3 The Ingredients of a Neural Network 

In this section it will become clear why I introduced some mathematical basics. We 

needed the background information in order to understand the basics of artificial 
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neural networks. Most of this information here is based on the books Deep Learning 

with Python by Francois Chollet (27), grokking Deep Learning by Andrew W. Trask (32), 

Deep Learning by Ian Goodfellow, Yoshua Bengoi and Aaron Courville (28), The 

hundred-page machine learning book by Andriy Burkov (37) and two MIT lectures by 

Lex Fridman. Any supplementary sources will be mentioned explicitly. 

 

4.3.1 Activation Functions 

An activation function is at the end of each neuron and maps the value of the neuron 

onto another real number. Activation functions have to be continuous, but not 

differentiable and they have to be monotonic, but not strictly. These terms have been 

discussed in The Mathematics Section. 

The need for activation functions arises out of necessity to analyze data with non-linear 

correlations. Each neuron in a linear layer is a simple linear mapping from input to 

output and thus can only represent linear dependencies, this does not change with 

adding more layers. An activation function introduces this needed non-linearity. 

Figure 23 shows the activation functions, which I tested. The formulae are as following: 

• LeakyReLU: 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = { 𝑥 𝑖𝑓 𝑥 ≥ 0
0.01 × 𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• ReLU: 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 

• Sigmoid: 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  1

1+exp(−𝑥)
 

• Tangent Hyperbolic: 𝑇𝑎𝑛ℎ(𝑥) = exp(𝑥)−exp(−𝑥)

exp(𝑥)+exp (−𝑥)
 

• Softmax: 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp(𝑥𝑗)𝑗
 

• Identity just leaves the value untouched 
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Figure 23: Different Activation Functions (38) 

A full list of Activation Functions contained in PyTorch can be found in the PyTorch 

Documentation (39). 

 

4.3.2 Loss Function 

A neural network takes all input data, PyTorch calls these tensors and runs it through 

all neurons and at the end it makes a prediction. This prediction then is compared to 

the target for that data and a loss is calculated how far the prediction is from the target. 

The function determining this distance is called a Loss Function. This is where the 

learning part in Machine Learning comes into play, now the machine tries to adjust all 

weights and biases to minimize this loss or error. A single run over all data points is 

called an epoch, training a network successfully takes several epochs. How many can 

only be determined through training. (27) (32) (40) 

In this work I only used the categorical Crossentropyloss function and the information 

about it are lifted from the PyTorch Documentation (41). Crossentropyloss is a 

combination of logarithmic softmax and function called negative log likelihood loss. 

For every category i the final loss function is: 

𝐶𝐸 = − ∑ 𝑡𝑖⏟
𝑡𝑎𝑟𝑔𝑒𝑡

log 𝑠𝑖⏟
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐶⏞
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖

 

 

 

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
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Another typical, but not suitable for my proposes, loss function is Mean Squared Error: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑡𝑖 − 𝑠𝑖)

2 

 

4.3.3 Optimizer & Gradient Descent 

 
Figure 24: Showing the difference between a local and global minimum 

For the equations and mathematics, I consulted the following articles: 

(42) (43) (44) (45) (46) 

Just calculating the error made on a data set is not enough for learning to have an effect. 

The optimizers task is it to update the weights and biases of the network based on the 

loss value calculated through the loss function. One has to be aware of the difference 

between a local and global minimum. This is shown in Figure 24, where the point on 

the right is only a local minimum and not a global. It can always happen that the 

optimizer ends up in the local minimum and it will stop optimzing. (47)  

 

 
Figure 25: Comparision of Gradient Descent, Stochastic Gradient Descent and SGD with Momentum (44) 
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There are several optimizers, the most popular are (48): 

Gradient Descent (GD) 

This is the simplest optimizer, it updates every paratmer 𝜃  just by the error-/loss-

gradient times a scaling factor 𝜇 called the learning rate: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃) 

The memory requirements are high, since all data points are taken into account and 

updates are infrequent. This means it will ploddingly converge into the minimum. Also 

they have the same learning rate for all parameters, which causes problems with 

sparse data sets or data with a wide range of differing frequencies or where the weight 

matrix is ill conditioned. Further the learning rate is fixed, which can be compensated 

by using a scheduler to adjust the learning rate. These usually adjust the learning rate 

depending on the epoch and not based on convergence. How this algorithm reaches a 

loss minimum is shown on the left in Figure 25. This algorithm was suggested long 

before ML was conceived by a mathematician by the name Augustin-Louis Cauchy15.  

 

Stochastic Gradient Descent (SGD) 

Here we only test for a smaller sample 𝑥𝑖 , 𝑦𝑖 of the data set, which reduces the amount 

of memory needed, while at the same time increasing the update frequency. The size 

of these samples is called batch size. But this means the optimizer will oscillate. This 

can be seen in the middle in Figure 25. The oscillation might lead to overshooting the 

minimum. 

𝜃𝑡+1 = 𝜃𝑡 − 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃, 𝑥𝑗 , 𝑦𝑗) 

As with Gradient Descent we have only a single and fixed learning rate for all 

parameters. 

 

Stochastic Gradient Descent with Momentum (SGD with Momentum) 

In order to rectify the oscillation of SGD a momentum 𝛾 was introduced: 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜇 ⋅ ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃, 𝑥𝑖 , 𝑦𝑖) 

𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡 

 
15 Augustin-Louis Cauchy (21 August 1789 – 23 May 1857) 
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This additional hyperparameter leads to faster convergence, but it is one more value 

that needs to be fiddled with. With this optimizer the learning rate also stays fixed. A 

comparison with the previous two optimizers is shown in Figure 25, SGD with 

Momentum is in the right. 

 

Adam 

Here a first and second order momentum 𝑚𝑡  and 𝑣𝑡  are introduced based on the 

gradient 𝑔𝑡, the parameters 𝛽1 and 𝛽2 lay between zero and one: 

𝑔𝑡 = ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃𝑡) 

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡  

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 

�̂�𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

 

�̂�𝑡 =
𝑣𝑡

(1 − 𝛽2
𝑡)

 

𝜃𝑡 = 𝜃𝑡−1 − 𝜇 ⋅
�̂�𝑡

(√�̂�𝑡 + 𝜖)
 

the parameters 𝑚𝑡 and 𝑣𝑡 are set to zero initially and they tend to stay close to zero, this 

is why �̂�𝑡 and �̂�𝑡 are used to compensate for that. This optimizer converges fast, but at 

the cost of computational intensity. 

 

AdaGrad 

Gradient Descent and all modifications of it have the problems that the learning rate is 

fixed and that there is a single learning rate for all parameters. This is compensated in 

this optimizer by scaling the learning rate by 𝐺𝑡 and a tiny stability constant 𝜖: 

𝑔𝑡,𝑖 = ∇𝜃𝐸𝑟𝑟𝑜𝑟(𝜃𝑡,𝑖) 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜇

√𝐺𝑡,𝑖𝑖 + 𝜖
⋅ 𝑔𝑡,𝑖 

𝐺𝑡  is diagonal matrix, containing the square sums of previous gradients, thus the 

learning rate is scaled according to the gradient. The learning rate falls too fast and the 

network stops learning, because the square sums coalesce to a too large sum over time. 
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AdaDelta 

AdaDelta introduces a moving average of the square root sums 𝐸[𝑔(𝑤)2], it has a cut off 

𝑤 for how far into the past it goes and it has a scaling factor 𝛾 similar to SGD and Adam: 

𝐸[𝑔(𝑤)2](𝑡) = 𝛾𝐸[𝑔(𝑤)2](𝑡 − 1) + (1 − 𝛾)𝑔𝑡
2 

𝜃𝑡+1 = 𝜃𝑡 −
𝜇

√𝐸[𝑔(𝑤)2](𝑡) + 𝜖
⋅ 𝑔𝑡  

This prevents the accumulation of gradient values and thus the learning rate does not 

fall too fast. This optimizer is computationally intensive. 

 

Root Mean Square Proverbialities (RMSprop) 

The last of the popular optimizers resembles AdaDelta insofar that it uses a moving 

average of square sums of previous gradients. 

𝐸[𝑔2](𝑡) = 𝛾𝐸[𝑔2](𝑡 − 1) + (1 − 𝛾) (
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝜃
)
2

 

𝜃𝑖𝑗(𝑡) = 𝜃𝑖𝑗(𝑡 − 1) −
𝜇

√𝐸[𝑔2](𝑡)

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝜃𝑖𝑗
 

 

In Figure 25 is a comparison between GD, SGD and SGD with Momentum and how they 

each try to find the minium of the loss function. RMSprop is a generally recommended 

optimizer for a wide range of problems (27). 

A more advanced optimizer has been proposed, which takes the Hessian of the loss 

function into account and can theoretically find the global minimum of the loss 

function in fewer steps, but at the costs of higher computational requirements. It is 

called AdaHessian and employs an approximation of the eigenvalues of the Hessian 

Matrix (49). 
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4.3.4 What is an artificial neuron? 

 
Figure 26: An Artificial Neuron (34) 

In Figure 26 is a schema of an artificial neuron. In the figure we see three inputs 𝑥𝑖, 

which are just numbers. They are multiplied by a weight 𝑤𝑖 and all of this is summed 

up in 𝑧, where we also add or subtract a bias 𝑏 and send that to the activation function 

𝜎. The final output is then calculated as: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎 (𝑏 +∑𝑥𝑖𝑤𝑖
𝑖=1

) 

 

4.3.5 Linear layer 

A neuron has one output, hence a layer has as many outputs as it has neurons and each 

neuron has as many inputs as the previous layer has neurons. The first layer has as 

many inputs as there are features in the data set and the last layer has as many neurons 

as there are categories. 

Handling a data set with widely varying features can be difficult. There are strategies, 

called regularization that can help with getting a grip on the data. I will talk about two 

of these techniques since they are the two that I tested and used. They are called out 

dropout rate and the batchnorm and third one is called L1 & L2 regularization. 

The easiest way to prevent overfitting is to introduce dropout rates, where random 

neuros are set to 0. This has the effect that for each input only a subset of the network 

will be trained and overfitting will be prevented since smaller networks cannot capture 

as many details of a data set. An illustration of this is shown in Figure 27, where random 

neurons are set to 0. (28) (27) (32)  
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Figure 27: Illustration of dropout, on the left without dropout and on the right different examples of 

subnetworks (28) 

The second strategy is to normalize each batch in each layer. This helps already in 

smaller networks with the gradient and finding the loss minimum, but for larger 

networks it is even necessary in order to train them. It has been empirically shown, 

that batch norm helps with convergence. (27) 

 

Let us turn our attention to what happens in a linear layer. Given a layer of m neurons 

and n neurons on the previous layer, we can write all weights W of one layer into a 

matrix and all biases B of the same layer into a vector: 

𝑊 =

(

 
 

𝑊11 𝑊12 … 𝑊1𝑛−1 𝑊1𝑛
𝑊21 𝑊22 …   
     
⋮   ⋱ ⋮

𝑊𝑚1  …  𝑊𝑚𝑛)

 
 
                𝐵 =

(

 
 

𝑏1
𝑏2
⋮

𝑏𝑚−1
𝑏𝑚 )

 
 

 

Together with an input vector we can calculate the output as: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ⋅ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠 
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= 

(

 
 

𝑊11 𝑊12 … 𝑊1𝑛−1 𝑊1𝑛
𝑊21 𝑊22 …   
     
⋮   ⋱ ⋮

𝑊𝑚1  …  𝑊𝑚𝑛)

 
 
⋅

(

 
 

𝑥1
𝑥2
⋮

𝑥𝑚−1
𝑥𝑚 )

 
 
+

(

 
 

𝑏1
𝑏2
⋮

𝑏𝑚−1
𝑏𝑚 )

 
 

 

= 

(

 
 
 
 
 
 
 

𝑏1 +∑ 𝑊1𝑖𝑥𝑖
𝑛

𝑖=1

𝑏2 +∑ 𝑊2𝑖𝑥𝑖
𝑛

𝑖=1

⋮

𝑏𝑚−1 +∑ 𝑊𝑚−1𝑖𝑥𝑖
𝑛

𝑖=1

𝑏𝑚 +∑ 𝑊𝑚𝑖𝑥𝑖
𝑛

𝑖=1 )

 
 
 
 
 
 
 

 

 

Something curios happened here. Our input is not a matrix, which we would expect if 

given an image but a vector. What happened here is that the matrix was reshaped into 

vector 𝑛 ×𝑚 → 1 × 𝑛 ⋅ 𝑚, in this transformation no information was lost, since all values 

and their relations were kept. Here we have just matrix-vector multiplication. This 

output will be ran through an activation function and used as input for the next layer. 

 

4.3.6 Convolutional layer 

The introduction of convolutional layers lead to breakthroughs in digital image 

recognition. These layers look at parts of an image with a running filter or kernel and 

map this filter into one pixel of a target image. The best way to understand what they 

are doing is to look at the illustration in Figure 28, where we have an input on the left. 

In the middle we see the filter, sometimes called a kernel, and an output on the right 

side. This has two effects, first is that it denoises images and second they learn local 

patterns within images unlike linear layer which only learn global characteristics (27) 

(28). A convolutional layer has the following arguments (50): 

• Input size 

• Output size 

• Filter or kernel size 

• Stride 

• Padding 

• Pooling 
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Figure 28: How a convolutional layer works (51) 

Input size are the dimensions and number of channels of the input images, output size 

is in how many channels the output image should be decomposed. The filter size 

determines how many pixels will be enrolled into one. Larger filters allow looking at 

larger features, but they lose the ability to abstract features out of their position. The 

inverse is true for smaller filters and one has to balance the filter size in accordance to 

the input image. The number of channels can be interpreted as with how many filters 

the layer is looking at a given input and thus more channels will find more shapes 

within the image. Stride is the step size of the filter or how many pixels the filter jumps 

if set to one every pixel will be looked at. Padding is the amount of pixel padding around 

the image in order to maintain image size. One can pad the image with just zeros or 

simply extent the border pixels further. Finally pooling averages several pixels into 

one. (50) 

A beautiful way of showing how convolutional layers work is shown in Figure 29. We 

see how each layer breaks down the bicycle into parts. On the top we have the bike, 

then one step down we get the frame, a wheel, the saddle and finally on the button each 

single component, that makes up a bike. 
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Figure 29: The breaking down of a bike into its components (51) 

Convolution in mathematics is defined as (28): 

𝑠(𝑡) = ∫𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎 = (𝑥 ∗ 𝑤)(𝑡) 

This is one dimensional and continues and since we are concerned with two 

dimensional bitmaps, we will change to a discrete sum and convolute in two directions 

(28): 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =∑𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑚,𝑛

 

If we want to maintain images size, we can employ padding, which creates a border 

around the image. This can just be the outer values mirrored or just filling in zeros. The 

padding size p is then, given a kernel size f (52): 

𝑝 =
𝑓 − 1

2
 

Given an input size 𝑛𝑖𝑛, a kernel size f, padding p and stride s, one can calculate the 

output size 𝑛𝑜𝑢𝑡 (52): 

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛 + 2𝑝 − 𝑓

𝑠
+ 1 

Stride is the speed or step size at which the filter moves over the image. Here is an 

example of how convolution works. It is taken from (37): 

(

  
 
[

1 0
1 0

0 1
1 0

1 1
0 1

0 0
0 1

]

⏟        
𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

∗ [
−1 2
4 −2

]
⏟      

𝑓𝑖𝑙𝑡𝑒𝑟

)

  
 
+ 1⏟
𝑏𝑖𝑎𝑠

= [
4 −1 7
2 7 0
0 4 −1

]
⏟        
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒

 

[
1 0
1 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 4 

[
0 0
0 1

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = −1 
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[
0 1
1 0

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 1 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 7 

[
1 0
1 1

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 1 ⋅ (−2) + 1 = 2 

[
0 1
1 0

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 1 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 0 

[
1 0
0 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 0 ⋅ (−2) + 1 = 7 

[
1 1
0 1

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 1 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = 0 

[
1 0
1 0

] ∗ [
−1 2
4 −2

] → 1 ⋅ (−1) + 0 ⋅ 2 + 1 ⋅ 4 + 0 ⋅ (−2) + 1 = 4 

[
0 0
0 1

] ∗ [
−1 2
4 −2

] → 0 ⋅ (−1) + 0 ⋅ 2 + 0 ⋅ 4 + 1 ⋅ (−2) + 1 = −1 

 

in our example the equation for the output size is as follows: 

𝑛𝑜𝑢𝑡 =
4 + 2 ⋅ 0 − 2

2
+ 1 = 3 

 

4.3.7 Transposed Convolutional Layer 

 
Figure 30: How Transposed Convolution works (53) 

A method of upscaling an image is called transposed convolutional layer. The name is 

a bit misleading, since it is not a convolution at all. In a convolution several pixels are 

multiplied by a matrix and summed into a single pixel. In principle it works similar to 

a convolutional layer, but instead of compressing the image size, it increases the image 

size. But it is important to understand that it is not the inverse of a convolution, hence 

it is called transposed convolution and not deconvolution. It still retains all the 

parameters of a convolutional layer, but the filter is applied in such a manner, that it 

scales up the image and not down. (54) 

With transposed convolution we take a single pixel and multiply it with a matrix. Then 

we patch these matrices together by summing the overlaps. In Figure 30 is an example 

how this process works. We do this to up-sample the image, but unlike other up-

sampling algorithms, transposed convolution has learnable parameters. (55) 
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4.3.8 Other Layer Types 

There are other layer types, like recurrent neural network (RNN) and Long short-term 

memory (LSTM), but I did not implement them, since they are geared towards 

sequential data types like language or video. It could still be a subject for further 

research, if these types of layers can be employed in data analysis for the PXD. (27) (28) 

 

4.3.9 The Basic Working Principle of a Neural Network 

For the mathematics and the equations of backpropagation I reference (56) (57). 

Backpropagation is the process of adjusting the weights of the network to minimize the 

errors. This task is taken care of by optimizers. While I already hinted at how a neural 

network learns, I will summarize the principle at this point. The basic workflow is 

shown in Figure 31 and one can follow along each step laid out there.  

The first step is initializing the network. Each weight and bias can be initialized either 

with zeros, randomly or through modified random manners called He or Xavier. The 

latter two take the sizes of different layers into account (58). 

Xavier and He initializes the weights through a uniform distribution U and scaled by 

the size of the previous layer and biases are set to 0 (59): 

𝑊𝑖𝑗 ∝ 𝑈 [−
1

√𝑛
,
1

√𝑛
]  

It was empirically shown that this initialization leads to better training results (59). 

We can imagine a layer as a function 𝑓(𝑥) = 𝑦 which maps an input x onto an output y. 

The concept of deep learning is then introduced by chaining several layers or functions 

together (28): 

𝑓(𝑥) = 𝑓3(𝑓2(𝑓1(𝑥) )) = 𝑦 = 𝑓1 ∘ 𝑓2 ∘ 𝑓3(𝑥) 

By now it should be clear why we talked about the chain rule in the mathematics 

section, since for backpropagation we need to apply it here: 

𝑓′(𝑥) = 𝑓3
′
(𝑓2(𝑓1(𝑥) )) ⋅ 𝑓2

′
(𝑓1(𝑥) ) ⋅ 𝑓1

′
(𝑥) 
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Figure 31: Basic work principle of neural network (27) 

The network naïvely reads in the first data batch in form of a series of vectors: 

𝑥(1) = (

𝑥1
 

𝑥2
 

⋮
𝑥𝑚
 

) 

the index m is the input size. The input layer has m inputs and n neurons: 

𝑥(2) = 𝜎 (∑(𝑏𝑗
(1)
+∑𝑤𝑗𝑖

(1)
⋅ 𝑥𝑖

(1)

𝑚

𝑖=1

)

𝑛

𝑗=1

) 

The first hidden layer has m inputs and l neurons: 

𝑥(3) = 𝜎 (∑(𝑏𝑗
(2) +∑𝑤𝑗𝑖

(2)
⋅ 𝑥𝑖

(2)

𝑛

𝑖=1

)

𝑙

𝑗=1

) 

We can generalize this step: 

𝑥(𝑘) = 𝜎

(

 
 
∑(𝑏𝑖

(𝑘−1) ∑ 𝑤𝑖𝑗
(𝑘−1)

𝑥(𝑘−1)
𝑚(𝑘−1)

𝑗=1

)

𝑚𝑘

𝑖=1⏟                    
=𝑧𝑘 )

 
 
= 𝜎(𝑧𝑘) 

This prediction will in all likelihood be completely off, but this is just the starting point. 

In my project I will employ a softmax activation function on the last layer. It means the 

norm of the output will be equal to one, thus making it a probability for each category. 

The prediction is compared to the target in the loss function: 

𝐸(𝑥) = ∑ 𝑡𝑖 log10 𝑥𝑖

𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1

 

Its score is then given to the optimizer, which then adjusts the weights and biases in 

order to minimize the loss for the next batch. This step is called backpropagation, 
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because the error is propagating back through the network. Now we want to know the 

amount of error caused by every weight and bias, which is given by: 

𝜕𝐸

𝜕𝜃𝑖𝑗
(𝑘)
=

𝜕𝐸

𝜕𝑧𝑖
(𝑘)
⋅
𝜕𝑧𝑖

(𝑘)

𝜕𝜃𝑖𝑗
(𝑘)
   

For that we need something called the local gradient of layer k: 

𝛿(𝑘) = ∇𝑥(𝑘)𝐸 

Our task is to calculate the local gradient of each neuron i in layer, but we will start 

with the last layer: 

𝛿𝑖
(𝐿)
=

𝜕𝐸

𝜕𝑧𝑖
(𝐿)

=⏞

𝐶ℎ𝑎𝑖𝑛
𝑟𝑢𝑙𝑒 𝜕𝐸

𝜕𝑥𝑖
(𝐿)
⋅
𝜕𝑎𝑖

(𝐿)

𝜕𝑧𝑖
(𝐿)
=

𝜕𝐸

𝜕𝑥𝑖
(𝐿)
⋅ 𝜎′ (𝑧𝑖

(𝐿))  

The next step is to go one layer deeper. The error here is determined by 𝜕𝐸
𝜕𝑥𝑖

(𝑘)⁄  which 

depends on all previous outputs; hence we get in a similar manner as above: 

𝛿𝑖
(𝑘)
= ∑

𝜕𝐸

𝜕𝑧𝑗
(𝑘+1)

⏟    

=𝛿𝑗
(𝑘+1)

𝑛(𝑛+1)

𝑗

⋅
𝜕𝑧𝑗

(𝑘+1)

𝜕𝑧𝑖
(𝑘)

⏟    

𝜃𝑗𝑖
(𝑘+1)

⋅𝜎′(𝑧𝑖
(𝑘)
)

= ∑ 𝜃𝑗𝑖
(𝑛+1)𝜎′ (𝑧𝑖

(𝑘)) 𝛿𝑗
(𝑘+1)

𝑛(𝑛+1)

𝑗

 

This gives us finally: 

𝜕𝐸

𝜕𝑤𝑖𝑗
(𝑘)
= 𝜎𝑗

(𝑘−1)
𝛿𝑖
(𝑘) 

Now we know how much we have to change the weights and biases to make a smaller 

error in the next epoch. The new values for each weight and bias are given by: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜇∇θt𝐸 

This is then repeated until all batches have been processed and then again until all 

training cycles, called epochs, have been run. In the last step it is important to stress, 

that this is a simple gradient decent. We could have used another and more complex 

algorithm. (28) (27) (32) 

 

4.3.10 A List of Hyperparameters 

Table 2 contains a list of hyperparameters concerning neural networks. These are the 

numerical values, that fully characterize a neural network and its learning process. It 

is based on a table from (28) which I extended a bit to the best of my understanding. 



59 

 

 

Table 2: List of hyperparameters to tune (28) 

Hyperparameter 
To increase 

capacity 
Reason Premonition 

Number of hidden 

layers 
increase 

more details can 

be encoded, 

enables non-linear 

analysis 

increases 

calculation time 

and needs longer 

training 

Number of Neurons 

per Layer 
increase 

more details can 

be encoded 

increases 

calculation time 

Dropout rate decrease 
finer details can be 

captured 

learning rate needs 

to be adjusted to 

compensate for 

overfitting 

Learning rate tune 

lower learning 

rates stave off over 

fitting, too low 

learning rates lead 

to underfitting 

lots of testing 

needs to be done to 

find a proper 

learning rate 

Decay of learning 

rate 
tune 

allows higher 

learning rates, 

while preventing 

overfitting in the 

long run 

lots of testing 

needs to be done to 

find a proper 

decay rate 

Filter size of 

convolutional 

layers 

increase 

the right filter size 

can capture image 

features perfectly 

too large filter 

compress images 

and lead to huge 

information loss 
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Number of 

channels 
increase 

more patterns can 

be found in input 

increases the 

computational 

load 

Image padding increase 

compsates for loss 

in case of larger 

filters 

it only mitigates 

information loss 

and not curtail it 

Momentum tune 

larger momentum 

leads to faster 

convergence 

with too large 

momentum the 

optimizer will 

overshoot minima 

Batch size tune 

smaller batch sizes 

increase 

convergence, 

larger batch sizes 

allow more 

generalization 

small batch sizes 

can lead to 

overfitting, while 

larger one lead to 

underfitting 

Epochs depends   

 

 

4.4 Python and PyTorch 

Python is a high-level scripting language, still maintaining object orientation and is 

aimed at non-computer-science scientists. Its main goal thus is to be easily learnable, 

shedding the complexity of the more traditional languages and producing readable 

code. One big advantage of Python over other high-level languages is its extensibility; 

modules for Python can be written in Python or in C and interact directly with Python, 

this makes extending Python easy, while maintaining speed and reliability. Because of 

the high-level character, its intended target audience, namely scientists and its 

extensibility make it suitable for this project. 

Python was first released 1991, the next verion (2.0) was released 2000 and the current 

release (3.0) is from 2008. (60) (61) (62) 
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PyTorch is an open-source framework for developing neural networks and more 

general for Machine Learning. It was developed by Facebook and first released in 2016 

(63). 

The syntax and language design of PyTorch is similar to Python, which makes it highly 

approachable to newcomers, if they already have some knowledge in Python. 

Additionally, PyTorch has a large community, which can help in case of problems or 

issues. It has a stronger recommendation for scientists over its alternative Tensorflow. 

PyTorch is regarded as faster and it allows more control over the neural network than 

Tensorflow (64) (65) (66) (67). 

The reasons why I choose Python over any other language, for example something like 

C++, which is tremendously faster, was that I could develop and test my code quicker. 

In other words, Python and PyTorch allowed me to iterate in shorter cycles. Also it is 

more adaptable and easier to read. Especially the employment of PyTorch to develop 

the artificial neural networks made it incredible easy to do so. Networks coded in 

PyTorch performe very well, since Python is only used to create the architecture, while 

underneath Nvidia CUDA and C++ are running (68). This enables the use of GPUs, 

massive parallelization and distribution over several computing nodes.  
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5 Statistics 

Never tell me the odds 

Han Solo 

We do not need much, but I still want them to be defined and explained, so let us talk 

about the important definitions. 

 

Definition 1 (Confusion Matrix): 

Let n be the number of classes, then the confusion matrix is a n×n matrix. Each column 

contains the assigned class and each row contains the actual class. Let 0≥i≥n∈ℕ, then 

row i of the confusion matrix contains all elements of class i and how often it was 

assigned to each class. The sum of row i is the number of elements in class i. Column i 

corresponds to the number of guesses per class and its sum is the number of total 

guesses per class i. (69) (70) (71) 

 
Figure 32: An Example Confusion Matrix based on simple Test Data 

Figure 32 shows a depiction of the confusion matrix, with some results from test data 

generated for this work. The test data are simple nine by nine matrices with either one 

or two horizontal or vertical lines. This gives us four classes, but sometimes two lines 

fall together and an item from a class of two lines looks like one from the class of a 

single line. 

Now to understand this matrix, the class test1 was correctly predicted 24.511 times and 

65 times items of this class were predicted to be of class test2. Class test2 was correctly 
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guessed 22.640 times and 2.772 times items of this class were thought to be of class test1 

and 60 of test3. 

 

Remark: 

With a perfect neural network the confusion matrix would simply be a diagonal matrix 

with the number of elements per class along the diagonal. Furthermore the elements 

of the confusion matrix are natural numbers. 

 

Definition 2 (True Positive): 

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined 

by Definition 1, then true positive (TP) for class i is given by (72): 

TPi = Mii 

 

Definition 3 (True Negative): 

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined 

by Definition 1, then true negative (TN) for class i is given by (72): 

 

TNi = ∑∑Mjk

n

k≠i

n

j≠i

 

 

Definition 4 (False Positive): 

Let n be the number of classes and 0≥i≥n ∈ℕ and let M be a confusion matrix as defined 

by Definition 1, then false positive (FP) for class i is given by (72): 

FPi = ∑Mji

n

j≠i

 

 

Definition 5 (False Negative): 

Let n be the number of classes and 0≥i≥n ∈ℕ, and let M be a confusion matrix as defined 

by Definition 1, then false negative (FN) for class i is given by (72): 

FNi = ∑Mij

n

j≠i
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Remark: 

The above definitions are given for a multiclass case. In a binary case, meaning just 

two classes, the confusion matrix will be 2×2 matrix and the sums above will just be 

single numbers. Since the confusion matrix consists only of natural numbers, the four 

definitions from above will all be natural numbers as well. Figure 33 shows how to 

read the above given definitions from a confusion matrix. 

 

 
Figure 33: How to read TP, TN, FN & FP from a Confusion Matrix (73) 

 

Definition 6 (Accuracy): 

Let TP, TN, FP and FN be a true positive, true negative, false positive and false negative 

respectively and as defined above, then accuracy a is given by (69) (71): 

a =  
TP + TN

TP + TN + FP + FN
 

 

 

 

 

Definition 7 (Precision): 

Let TP, TN and FP be a true positive, true negative and false positive respectively and 

as defined above, then precision p is given by (69) (71): 

p = 
TP

TP + FP
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Definition 8 (Recall): 

Let TP, TN and FN be a true positive, true negative and false negative respectively and 

as defined above, then recall r is given by (74) (71): 

r =  
TP

TP + FN
 

Definition 9 (Weighted F metric): 

Let p be a precision and r be a recall as defined above and β be a number, then the 

weighted F metric fβ is given by: 

fβ = (1 +β
2
) ×

p ×  r

β
2
p + r

 

Remark: 

If we set β= 1 in the weighted F metric we get the F1 score (74). 

 

Definition 10 (Matthew Correlation Coefficient): 

Let TP, TN, FP and FN be a true positive, true negative, false positive and false negative 

respectively and as defined above, then the Matthew Correlation Coefficient MCC is 

given by (69) (75): 

MCC = 
TP × TN − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

 

Remark: 

The Matthew Correlation Coefficient as defined above will be a real number between -

1 and +1, with -1 meaning that every guess was total wrong, 0 meaning that all guesses 

were random and +1 meaning, that the network worked perfectly. The -1 case is not the 

worst situation, one would flip the assumptions to get to +1. Only in case of MCC=0 we 

would be in a bad position, since it means there is no correlation between input and 

guess. The advantage of Matthew Correlation Coefficient over other scores is, that it 

works good with multilabel systems and it suits even unbalanced data sets, meaning 

data sets with vastly different amounts of data per label (75).  
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6 Theoretical Background 

The miracle of the appropriateness of the language of mathematics for the formulation of the 

laws of physics is a wonderful gift which we neither understand nor deserve. 

Eugene Wigner 

6.1 The Standard Model 

All models are wrong, but some are useful 

George E. P. Box 

The SM is the crown achievement of modern-day physics, combing Maxwell’s16 theory 

of electrodynamics with Einstein’s Special Relativity. The former combined electronic 

forces with magnetic forces and the latter is an extension of Newtonian17 Mechanics, 

postulating a four dimensional space, combining space and time into spacetime and 

fixing the speed of light to an absolute. 

In Figure 34 we see a depiction of the standard model with the three generations of the 

quark and lepton families as outer circle, the gauge bosons18 in the middle, governing 

the fundamental forces and at the center is the elusive Higgs. 

The basis for the SM is Quantum Field Theory (QFT), where particles are described as 

excitations in field equations. In QFT forces are carried by exchange particles, which 

are virtual particles or fluctuations in the field equations. The reach or life times of 

these exchange particles are determined by Heisenberg’s19 uncertainty principle (76). 

The field equations can be calculated by using Lagragian equations. The gauge group 

of the SM Lagragian is 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌, the generators for SU(2) and SU(3) the 

three Pauli20- and Gell-Mann21-matrices respectively (77).  

 

 
16 James Clerk Maxwell (13 June 1831 – 5 November 1879) 
17 Sir Isaac Newton (25 December 1642 – 20 March 1727) 
18 Satyendra Nath Bose (1 January 1894 – 4 February 1974) 
19 Werner Karl Heisenberg (5 December 1901 – 1 February 1976) 

    Allegedly Bohr made Heisenberg cry (127).  
20 Wolfgang Ernst Pauli (25 April 1900 – 15 December 1958) 
21 Murray Gell-Mann (15 September 1929 – 24 May 2019) 
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Figure 34: Standard Model (78) 

For further details, one should check Table 3 for information on the forces and Table 4 

for details about each particle of the SM. 

 

Table 3: The forces of the SM (and gravity) with their exchange particles (79) (80) (81) 

 Strong Weak Electromagnetic Gravitation 

Current Theory 

Quantum 

Chroma 

Dynamics 

(QCD) 

Electro Weak 

Theory 

Quantum 

Electro 

Dynamics 

(QED) 

General 

Relativity 

Charge Color Weak Charge Electric Charge  

Exchange 

Particle 
8 Gluons (g) W±, Z0 Photons (γ) 

Graviton 

(hypothetical) 

Mass / GeV 0 80, 90 0 0 

Long-distance 

behavior 
~𝑟 1

𝑟
𝑒−𝑚𝑊,𝑍𝑟 

1

𝑟
 

1

𝑟
 

Range / m 2 × 10−15 2 × 10−18 ∞ ∞ 

Coupling 

Parameter 

𝛼𝑠𝑡𝑟𝑜𝑛𝑔

=
1

2
…
1

10
 

𝛼𝑤𝑒𝑎𝑘 =
1

30
 𝛼𝑒𝑚 =

1

137
 

𝛼𝑔

=
1

1045
…

1

1038
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Relative 

Strength 
1 10−15 10−2 10−41 

JP 1- 1- 1 2 

 

 

Table 4: The three generations of leptons and quarks (79) 

Fermion 

1st 

Gen. 

2nd 

Gen. 

3rd 

Gen. Charge Color 

Lefthanded 

Isospin 

Righthanded 

Isospin Spin 

Leptons 
νe νμ ντ 0 

-- ½ 
-- 

½ 
e μ τ -1 0 

Quarks 
u c t +⅔ 

r, g, b ½ 
0 

½ 
d s b -⅓ 0 

 

But let us have a look at all parts of the SM Lagragian (82): 

ℒ𝑆𝑀 = ℒ𝑌𝑎𝑛𝑔−𝑀𝑖𝑙𝑙𝑠⏟      
ℒ𝑄𝐶𝐷+ℒ𝐼𝑊+ℒ𝑌

+ ℒ𝑊𝑒𝑦𝑙−𝐷𝑖𝑟𝑎𝑐 + ℒ𝑌𝑢𝑘𝑎𝑤𝑎 + ℒ𝐻𝑖𝑔𝑔𝑠 

The Yang22-Mills23 sector compromises of QCD, weak isospin field strength and the 

hypercharge, sometimes ℒ𝑄𝐶𝐷  and ℒ𝑌  and combined to a gauge Lagrangian and the 

Weyl24-Dirac25 sector is sometimes called fermion sector (77). Other times the Yang-

Mills and Weyle-Dirac sector are combined and expressed as (83): 

ℒ𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑖�̅�(𝐷
𝜇𝛾𝜇)𝜓 

which is eerily similar to the Dirac equation without mass term. The other terms are 

then hidden inside the covariant derivative 𝐷𝜇 (83). I will not write the full Lagragian, 

because it is not necessary for this work and a bit excessive and instead I will focus on 

the Yukawa sector of the SM. This is the sector which gives rise to the CKM matrix, 

which governs CP violation in the SM. The gauge groups and the sectors of SM are 

 
22 Chen-Ning Yang (1 October 1922) 
23 Robert Laurence Mills (15 April 1927 – 27 October 1999) 
24 Hermann Klaus Hugo Weyl (9 November 1885 – 8 December 1955) 
25 Wolfgang Pauli: »There is no God and Dirac is His prophet« 
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tabulated in Table 5 (77). Sometimes there is an additional ghost Lagrangian to 

compensate for too many degrees of freedom. 

 

Table 5: The gauge groups of the SM (77) 

Group Lagrangian fields 
After electroweak 

symmetry breaking 

SU(3) gluons gluons 

SU(2) 𝑊𝜇
1,2,3 𝑊𝜇

±, 𝑍𝜇 

U(1) 𝐵𝜇 𝐴𝜇 

 

The Yukawa26 Lagragian density belongs to 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌  gauge groups (77) and its 

symmetry is spontaneously broken by the presence of the Higgs mechanism and this is 

where the mass of W and Z bonsons comes from. This Largangian is the source of quark 

mixing (77) (82) (83). The Yukawa Largangian reads as follows (77) (84) (85): 

ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = −{(
𝑒̅
�̅�
𝜏̅
)

𝑇

⋅ (

𝑚𝑒 0 0
0 𝑚𝜇 0

0 0 𝑚𝜏

) ⋅ (
𝑒
𝜇
𝜏
) + (

�̅�
𝑐̅
𝑡̅
)

𝑇

⋅ (
𝑚𝑢 0 0
0 𝑚𝑐 0
0 0 𝑚𝑡

) ⋅ (
𝑢
𝑐
𝑡
) + (

�̅�
�̅�
�̅�

)

𝑇

⋅ (
𝑚𝑑 0 0
0 𝑚𝑠 0
0 0 𝑚𝑡

) ⋅ (
𝑑
𝑠
𝑏
)} ⋅ (1 +

𝐻

𝑣
) 

H is a scalar Higgs field and v is the vacuum expectation value (85) and dsb are linear 

combinations of electroweak eigenstates (77): 

(
𝑑
𝑠
𝑏
)

⏟
𝑚𝑎𝑠𝑠

𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

= 𝑉𝐶𝐾𝑀 ⋅ (
𝑑′
𝑠′
𝑏′
)

⏟
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑤𝑒𝑎𝑘
𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

 

This is where the famous CKM matrix comes in, but more on it in a later section. It is a 

matrix product of two unitary matrices, which allow generation mixing, and is thus 

also unitary. One can show, that the meson octet and baryon decuplet/octet are 

generated through SU(N) gauge symmetries and the use of a quark Lagrangian (77): 

 
26 Hideki Yukawa (23 January Meiji 40 – 8 September Showa 56) 
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ℒ𝑞𝑢𝑎𝑟𝑘 = ∑ �̅�𝑓(𝑖𝛾
𝜇𝐷𝜇 −𝑚𝑓)

𝑓∈{𝑢,𝑑,𝑠}

 

The ansatz here is to use three-by-three ladder matrices (77). 

 

6.1.1 What is Gauge Theory 

The basic idea of gauge theories are transformations of fields and potentials that leave 

the underlying equations of motion invariant. In other words, we transform a 

mathematical construct, that cannot be measured, that does not change the 

mathematical object describing what can be measured. Given a potential 𝜙  we 

calculate the force by taking the derivative: 

𝐸 = −∇𝜙 − 𝜕𝑡𝐴 

Now we can add any terms that vanish when taking the gradient of the potential. For 

example: 

𝜙′ = 𝜙 + 𝜕𝑡Λ       𝐴
′ = 𝐴 − ∇Λ 

These transformations form a mathematical group that is called gauge group in 

physics. This basic idea was first introduced by Clark Maxwell in the theory of 

electrodynamics. The above example can be easily extended to a four-dimensional 

potential: 

𝐴𝜇 → 𝐴𝜇
′ = 𝐴𝜇 + 𝜕𝜇𝑓 

This kind of transformation is central to the quantum field theories and the theory of 

relativity. The same principle can be applied to a Lagragian. Adding additional terms 

to the Lagragian that do not change the resulting equations of motion. (86) (87) (88) 

 

6.1.2 Left- and Right-Handedness 

There is an intrinsic difference between particles whose spin is aligned colinear and 

antilinear to their momentum. In physics this called helicity or left- and right-

handedness, this is shown in Figure 35. This is important to understand, because the 

four fundamental forces act differently on left- and right-handed particles. The weak 

force for instance acts only on left-handed particles and all neutrinos are left-handed. 

(89) (79) 
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Figure 35: Helicity of particles and anti-particles (90) 

Helicity is expressed by (83): 

ℎ =
1

2
�⃗� ⋅ �̂� 

CP violation manifests itself by not conserving helicity (83). Left-handed particles have 

a helicity of ℎ = −1 and right-handed ℎ = +1 (90).  

 

6.1.3 CPT Theorem 

This section is mostly based on the lecture notes for N Tunings lecture on CP violation 

(83) and on the article CP violation in the B system by T. Gershon and V.V. Gligorov (91). 

If I used other sources to supplement the information presented here, I will mention it 

explicitly. 

CPT stands for charge conjugate, parity and time and consists of three operators. The 

first in the list flips all quantum numbers, hence it can transform between particle and 

anti-particle. The second mirrors all spatial coordinates and the last is the time reversal 

operator, which turns time around. 

In order to get a better understanding, let us look at the Dirac equation for QED: 

(𝑖𝛾𝜇𝜕𝜇 − 𝛾
𝜇𝑒𝐴𝜇 −𝑚)𝜓(�⃗�, 𝑡) = 0 

Here 𝛾𝜇 are the Dirac matrices, 𝐴𝜇 is the four potential and 𝜓 is a four-spinor. Now we 

will test how each operator acts on our spinor defined by the equation above. First the 

parity operator: 

𝑃: 𝜓(�⃗�, 𝑡) → 𝛾0𝜓(−�⃗�, 𝑡) = 𝑃𝜓(−�⃗�, 𝑡) 

then we check charge conjugate: 

𝐶: 𝜓(�⃗�, 𝑡) →  𝑖𝛾2𝜓∗(�⃗�, 𝑡) = 𝑖𝛾2𝛾0�̅�𝑇(�⃗�, 𝑡) = 𝐶�̅�𝑇(�⃗�, 𝑡) 

and time reversal: 

𝑇:𝜓(�⃗�, 𝑡) → 𝑖𝛾1𝛾3𝜓∗(�⃗�, −𝑡) = 𝑇𝜓∗(�⃗�, −𝑡) 

There are two more transformation we have to look at. First the CP operation: 

𝐶𝑃𝜓(�⃗�, 𝑡) = 𝑖𝑒𝑖ϕ𝛾2𝛾0𝜓∗(�⃗�, 𝑡) 

momentum

spin

particle
momentum

spin

anti-particle

left-handed right-handed
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and second CPT: 

𝐶𝑃𝑇𝜓(�⃗�, 𝑡) = 𝑒𝑖𝜙𝛾5𝜓(−�⃗�,−𝑡) 

The results additionally with a scalar field and an axial vector field is shown in Table 

6. 

Table 6: C and P operations on different field types (83) 

Field  P C 

Scalar Field 𝜙(�⃗�, 𝑡) 𝜙(−�⃗�, 𝑡) 𝜙†(�⃗�, 𝑡) 

Dirac Spinor 
𝜓(�⃗�, 𝑡) 𝛾0𝜓(−�⃗�, 𝑡) 𝑖𝛾2𝛾0�̅�𝑇(�⃗�, 𝑡) 

�̃�(�⃗�, 𝑡) �̅�(−�⃗�, 𝑡)𝛾0  −𝜓𝑇(�⃗�, 𝑡)𝐶−1 

Axial Vector Field 𝐴𝜇(�⃗�, 𝑡) −𝐴𝜇(−�⃗�, 𝑡) 𝐴𝜇
†(�⃗�, 𝑡) 

 

Due to the requirement of having Lorentz invariance, we want spinors to be Lorentz 

scalars and the way to achieve this is to use bilinear forms. Think of scalar products, 

where a dual vector maps a vector to a number. For this we will look at bilinear forms 

in Table 7. 

Table 7: C, P & T transformations of bilinear forms (83) 

 Bilinear P C T CP CPT 

scalar �̅�1𝜓2 �̅�1𝜓2 �̅�2𝜓1 �̅�1𝜓2 �̅�2𝜓1 �̅�2𝜓1 

pseudo 

scalar 
�̅�1𝛾5𝜓2 −�̅�1𝛾5𝜓2 �̅�2𝛾5𝜓1 −�̅�1𝛾5𝜓2 −�̅�2𝛾5𝜓1 �̅�2𝛾5𝜓1 

vector �̅�1𝛾𝜇𝜓2 �̅�1𝛾
𝜇𝜓2 −�̅�2𝛾𝜇𝜓1 �̅�1𝛾

𝜇𝜓2 −�̅�2𝛾
𝜇𝜓1 −�̅�2𝛾𝜇𝜓1 

axial 

vector 
�̅�1𝛾𝜇𝛾5𝜓2 −�̅�1𝛾

𝜇𝛾5𝜓2 �̅�2𝛾𝜇𝛾5𝜓1 �̅�1𝛾
𝜇𝛾5𝜓2 −�̅�2𝛾

𝜇𝛾5𝜓1 −�̅�2𝛾𝜇𝛾5𝜓1 

tensor �̅�1𝜎𝜇𝜈𝜓2 �̅�1𝜎
𝜇𝜈𝜓2 −�̅�2𝜎𝜇𝜈𝜓1 −�̅�1𝜎

𝜇𝜈𝜓2 �̅�2𝜎
𝜇𝜈𝜓1 �̅�2𝜎𝜇𝜈𝜓1 

 

6.1.4 Weak Force 

The weak force only acts on left-handed particles (92). It is only observable when the 

electromagnetic and strong forces are suppressed. But the weirdness does not stop here 

(77): 

• from Dirac’s equations we conclude, that C should hold 
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• P should still be a sound symmetry 

• from Newtonian’s mechanics we know, that T is reversable 

• combined violations in CPT would also break Lorentz invariance 

 

The W boson was discovered 1983 (93). The weak force is hard to observe, because it 

has only a tiny cross section (79) (93). The weakness of the Weak Force is is due to W 

and Z bosons having such a high mass (79), which comes from the breaking of 

symmetry by the presence of a Higgs field. The weak force is only observable when 

quark flavors are changed or when neutrinos are involved in the process (93). To gain 

some sense of the weakness of the weak force, we can look at the two decays and their 

half-life (93): 

𝛴+(1189) → 𝑝𝜋0  𝜏 ≈ 10−10𝑠 

𝛴0(1192) → 𝛬𝛾  𝜏 ≈ 10−19𝑠 

We can compare them to get an understanding of their relative strength (93): 

𝑔

𝑒
≈ √

10−19

10−10
≈ 10−5 

This means, that the weak force is several orders of magnitude weaker than the 

electromagnetic force. From experiments we know the reason is, that the gauge bosons 

of weak forces possess a large mass (93). This fact was already mentioned several times 

throughout this work. 

 

6.2 CP Violation 

6.2.1 Some History 

CP violation was first observed 1964 in decays of 𝐾𝑠ℎ𝑜𝑟𝑡 and 𝐾𝑙𝑜𝑛𝑔 by James Cronin27 and 

Val Fitsch28 (94). The former should always decay into two pions, whereas the latter 

should always decay into three poins (94). But it was observed that 𝐾𝑙𝑜𝑛𝑔 decayed into 

 
27 James Watson Cronin (29 September 1929 – 25 Agust 2016) 
28 Val Logsdon Fitch (10 March 1923 – 5 February 2015) 
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two poins, which happened at a rate of 0.1% (95). CP violation happens due to the weak 

forces in the quark-mixing matrix (11), which we saw in the Yukawa Lagragian.  The 

parity of the Kaon system is not well defined, if we look at the parity of these decays 

(93): 

𝐾+ → 𝜋+𝜋0    𝑃(𝜋+𝜋0) = (−1)(−1) = +1 

𝐾+ → 𝜋+𝜋+𝜋−  𝑃(𝜋+𝜋+𝜋−) = (−1)3 = −1 

From this we can conclude, that the weak force can change parity, which is not true for 

strong and electromagnetic forces (93). CP violation is accounted for by the CKM matrix 

in the SM. This matrix comes from the Yukawa sector of the SM Lagragian as was 

discussed in The Standard Model. CP violation is thus quantum mechanical 

interference. 

 

6.2.2 A general approach to CP violation 

The source of CP violation can easily be shown by this form of Yukawa Lagrangian (82) 

(83) (89): 

ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = 𝑌𝜓𝐿𝜒𝐿𝐻 − 𝑌
∗𝜓𝐿

†𝜎2𝜒𝐿
∗𝐻∗ 

with Y beging the Yukawa coupling matrices, 𝜓 und 𝜒 arbitrary spinors, H is again a 

Higgs doublet and 𝜎2 is the second Pauli matrix. Now if we apply a CP transformation, 

the source of CP violation should reveal itself (82) (83): 

𝐶𝑃ℒ𝑌𝑢𝑘𝑎𝑤𝑎 = −𝑌𝜓𝐿
†𝜎2𝜒𝐿

∗ 𝐻𝐶𝑃 + 𝑌∗𝜓𝐿
𝑇𝜎2𝜒𝐿

 𝐻∗𝐶𝑃 

since we know what the Higgs spinor looks like and that is it simply a complex 

conjugate we conclude, that CP is violated if and only if 𝑌 ≠ 𝑌∗ . We see, that CP violation 

arises from the Yukawa coupling matrice, if they are not purely real, but contain any 

kind of complex numbers. (82) (83) 

 

6.2.3 Three classes of CP violation 

This section is based on the lecture by N. Tuning (83) and the report by Greshon and 

Gligorov (91). We start with a generic, neutral Meson P, which decays into a final state 

f. We can have two eigenstates: 

𝑃1 = 𝑝𝑃
0 − 𝑞�̅�0 

𝑃2 =  𝑝𝑃
0 + 𝑞�̅�0 
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For the decay we will employ the the Wigner29-Weisskopf30 Hamiltonian31 (77): 

𝑖
𝜕

𝜕𝑡
(
𝑝
𝑞) = ℋ (

𝑝
𝑞) = (

𝑚11 −
𝑖

2
Γ11 𝑚12 −

𝑖

2
Γ12

𝑚21 −
𝑖

2
Γ21 𝑚22 −

𝑖

2
Γ22

)(
𝑝
𝑞) 

Since ℋ is hermitian, this implies 𝑚21 = 𝑚12∗  and Γ21 = Γ12∗ . 

CPT conservation implies 𝑚11 = 𝑚22 = 𝑚 and Γ11 = Γ22∗ = Γ: 

𝑖
𝜕

𝜕𝑡
(
𝑝
𝑞) = ℋ (

𝑝
𝑞) = (

𝑚 −
𝑖

2
Γ 𝑚12 −

𝑖

2
Γ12

𝑚12
∗ +

𝑖

2
Γ12
∗ 𝑚−

𝑖

2
Γ

)(
𝑝
𝑞) 

Now we know that there is a relative phase between 𝑚12 and Γ12 and if time reversal 

holds, we can use this relative phase to make 𝑚12 and Γ12 real. We can calculate the 

eigenvalues: 

𝜆± = (𝑚 −
𝑖

2
Γ) ± √(𝑚12 −

𝑖

2
Γ12)(𝑚12

∗ +
𝑖

2
Γ12
∗ ) 

and plugging them into: 

(
𝑚 −

𝑖

2
Γ 𝑚12 −

𝑖

2
Γ12

𝑚12
∗ +

𝑖

2
Γ12
∗ 𝑚 −

𝑖

2
Γ

)(
𝑝
𝑞) = 𝜆± (

𝑝
𝑞) 

which yields, after we make the choice that 𝑃2 is the heavier eigenstate: 

𝑞

𝑝
= √

𝑚12
∗ −

𝑖
2 Γ12

∗

𝑚12 −
𝑖
2 Γ12

 

In the case of decays into final states 𝑓 und 𝑓 ̅we will have four amplitutes: 

𝐴(𝑓) = ⟨𝑓|𝑇|𝑃0⟩ 

𝐴(𝑓)̅ = ⟨𝑓̅|𝑇|𝑃0⟩ 

𝐴̅(𝑓) = ⟨𝑓|𝑇|�̅�0⟩ 

𝐴̅(𝑓)̅ = ⟨𝑓̅|𝑇|�̅�0⟩ 

 
29 Eugene Paul Wigner (17 November 1902 – 1 January 1995) 
30 Victor Frederick Weisskopf (19 September 1908 – 22 April 2002) 
31 Sir William Rowan Hamilton (3 August 1805 – 2 September 1865) 
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In these cases, T is the transition operator and not the time reversal operator. We also 

have the four decay rates, Γ𝑃0→𝑓 , Γ𝑃0→𝑓̅ , Γ�̅�0→𝑓  and Γ�̅�0→𝑓̅ . With these prerequisites at 

hand we can understand the three kinds of CP violations. 

 

CP violation in decay 

It is also called tree-dominated CP violation, it happens when 

Γ𝑃0→𝑓 ≠ Γ�̅�0→𝑓̅ 

which is the case if: 

|
𝐴(𝑓)

�̅�(𝑓)̅
| ≠ 1 

This happens for example in semileptonic decays, such as 𝐵0 → 𝐷−𝜇+𝜈_𝜇. 

 

CP violation in mixing: 

Here CP violation is done through loop-diagrams, like Penguin and box diagrams, it 

happens in radiative, semileptonic decays 𝑏 → (𝑠, 𝑑)(𝛾, ℓ+ℓ−, 𝜈�̅�) and hadronic decays 

such as 𝑏 → 𝑠�̅�𝑠, 𝑑�̅�𝑠, 𝑠�̅�𝑑. This happens when 

𝑃𝑟𝑜𝑏(𝑃0 → �̅�0) ≠ 𝑃𝑟𝑜𝑏(�̅�0 → 𝑃0) 

which occurs when: 

|
𝑞

𝑝
| ≠ 1 

This form of CP violation only occurs occasionally. 

 

CP violation in interference 

This happens during oscillation between particle and anti-particle or with 𝑏 → 𝑢�̅�𝑠, 𝑢�̅�𝑑 

transitions. The defining relation is: 

Γ (𝑃(↝�̅�0)
0 → 𝑓) ≠ Γ(�̅�(↝𝑃0)

0 → 𝑓) 

This happens, only when the two mesons decay into a common eigenstate. This means 

𝑓 = 𝑓,̅ which then implies: 

𝐼𝑚(
𝑞𝐴�̅�
𝑝𝐴𝑓

) ≠ 0 

 

One can think of a double slit experiment, where there are two possible paths to take: 
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↗ �̅�0 ↘
𝑃0 → 𝑓

 

Either 𝑃0 can directly decay into 𝑓 or first into the anti-P and then into 𝑓. 

Observed CP violation in the following cases (91): 

Table 8: Observed CP violation in B systems 

violation in K0 K+ Λ D0 D+ D+
s Λ+

c B0 B+ B0
s Λ0

b 

mixing ✓ - - ✗ - - - ✗ - ✗ - 

decay ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ 

mixing/decay ✓ - - ✗ - - - ✓ - ✗ - 

 

6.3 CKM and Triangles 

6.3.1 CKM Matrix 

The Cabibbo32–Kobayashi33–Maskawa34 (CKM) matrix is given (96) in the case of three 

generations by: 

(
𝑑
𝑠
𝑏
)

⏟
𝑚𝑎𝑠𝑠

𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

= (
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

) (
𝑑′

𝑠′

𝑏′
)

⏟
𝑒𝑙𝑒𝑐𝑡𝑟𝑜−𝑤𝑒𝑎𝑘
𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒𝑠

 

The initial idea came from Cabibbo, but he came up with a two-by-two matrix and only 

connected two of the three generations. Kobayashi and Maskawa extended the idea to 

the three-by-three matrix we know today (92). It contains nine masses, three angles and 

a complex phase. This very phase is responsible for CP violation (83), which we saw 

already in A general approach to CP violation. Both, Kobayashi and Maskawa, won a 

Nobel prize for their contribution to physics (1), Cabbibo was left out. (83) 

We now want to figure out some characteristics of this matrix. The CKM matrix is 

unitary, which means (93) (91): 

 
32 Nicola Cabibbo (10 April 1935 – 16 August 2010) 
33 Makoto Kobayashi (7 April Showa 19 – 23 July Reiwa 3) 
34 Toshihide Maskawa (7 February Showa 15) 
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|𝑉𝑢𝑑|
2 + |𝑉𝑢𝑠|

2 + |𝑉𝑢𝑏|
2 = 1 

|𝑉𝑐𝑑|
2 + |𝑉𝑐𝑠|

2 + |𝑉𝑐𝑏|
2 = 1 

|𝑉𝑡𝑑|
2 + |𝑉𝑡𝑠|

2 + |𝑉𝑡𝑏|
2 = 1 

|𝑉𝑢𝑑|
2 + |𝑉𝑐𝑑|

2 + |𝑉𝑡𝑑|
2 = 1 

|𝑉𝑢𝑠|
2 + |𝑉𝑐𝑠|

2 + |𝑉𝑡𝑠|
2 = 1 

|𝑉𝑢𝑏|
2 + |𝑉𝑐𝑏|

2 + |𝑉𝑡𝑏|
2 = 1 

It is handy to reparametrize this matrix as a rotation matrix using cosine and sine with 

three special angles (1, 2, 3) and a CP violating phase factor (). It is customary to 

abbreviate some parts 𝑐𝑘 ≔ cos(θ𝑘) and 𝑠𝑘 ≔ si n(θ𝑘), then this matrix becomes (77): 

(

𝑐1 −𝑠1𝑐3 −𝑠1𝑠3
𝑠1𝑐2 𝑐1𝑐2𝑐3 − 𝑠2𝑠3𝑒

𝑖𝛿 𝑐1𝑐2𝑠3 + 𝑠2𝑐3𝑒
𝑖𝛿

𝑠1𝑠2 𝑐1𝑠2𝑐3 + 𝑐2𝑠3𝑒
𝑖𝛿 𝑐1𝑠2𝑠3 − 𝑐2𝑐3𝑒

𝑖𝛿

) 

This can be rewritten in terms of Euler35 angels 12, 23, 13 and a CP violating phase 13 

(97) (83): 

(

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿13

−𝑠13𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿13 𝑐12𝑐23 − 𝑠13𝑠23𝑠13𝑒

𝑖𝛿13 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒

𝑖𝛿13 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒
𝑖𝛿13 𝑐23𝑠13

) 

If we now substitute 𝜆 = 𝑠12, 𝐴𝜆2 = 𝑠23  and 𝐴𝜆3(𝜌 − 𝑖𝜂) = 𝑠13𝑒−𝑖𝛿  we get the 

Wolfenstein36 parametrization of the CKM matrix, which looks like the following (97) 

(98) (83): 

(

 
 

1 −
1

2
𝜆2 𝜆 𝐴𝜆3(𝜌 − 𝑖𝜂)

−𝜆 1 −
1

2
𝜆2 𝐴𝜆2

𝐴𝜆3(1 − 𝜌 − 𝑖𝜂) −𝐴𝜆2 1 )

 
 
+ 𝒪(𝜆4) 

 
35 Leonhard Euler (15 April 1707 – 18 September 1783) 
36 Lincoln Wolfenstein (10 February 1923 – 27 March 2015) 
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This form is practical, since most data to date, with exception of sin(2𝜷), come from CP 

conserving measurements (99). A b-quark decays most likely into a c-quark i.e., 

charmed decay, because of |𝑉𝑐𝑏|2 ≫ |𝑉𝑢𝑏|2 (100). 

The values for each element of the CKM matrix are (83) (96): 

𝑉𝐶𝐾𝑀 = (

|𝑉𝑢𝑑| |𝑉𝑢𝑠| |𝑉𝑢𝑏|

|𝑉𝑐𝑑| |𝑉𝑐𝑠| |𝑉𝑐𝑏|

|𝑉𝑡𝑑| |𝑉𝑡𝑠| |𝑉𝑡𝑏|
)

= (
0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.99911

) ± (
0.00010 0.00044 0.00012
0.00044 0.00011 0.00076
0.00024 0.00974 0.00003

) 

A special role is played by the elements 𝑉𝑢𝑠, 𝑉𝑐𝑠 and 𝑉𝑢𝑏, they are involved in K and B 

decays, through which CP violation is currently studied (96). The element 𝑉𝑢𝑏 contains 

a complex phase and is therefore responsible for CP violation (93). It is this complex 

phase which was hinted at in the section A general approach to CP violation. 

 

6.3.2 The Unitary Triangle 

There are six unitary triangles, that can be derivate from the CKM matrix (97) and they 

can be written as following (83): 

𝑉𝑢𝑑𝑉𝑢𝑠
∗  ⏟    

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑐𝑑𝑉𝑐𝑠
∗⏟  

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑡𝑑𝑉𝑡𝑠
∗⏟  

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆5

= 0 

𝑉𝑢𝑑𝑉𝑢𝑏
∗

⏟    
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑐𝑑𝑉𝑐𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑑𝑉𝑡𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

= 0 

𝑉𝑢𝑠𝑉𝑢𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆4

+ 𝑉𝑐𝑠𝑉𝑐𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

+ 𝑉𝑡𝑠𝑉𝑡𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

= 0 

𝑉𝑢𝑠𝑉𝑐𝑠
∗⏟  

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑢𝑑𝑉𝑐𝑑
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

+ 𝑉𝑢𝑏𝑉𝑐𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆

= 0 

𝑉𝑡𝑏𝑉𝑢𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑑𝑉𝑢𝑑
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

+ 𝑉𝑡𝑠𝑉𝑢𝑠
∗⏟  

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆3

= 0 

𝑉𝑐𝑑𝑉𝑡𝑑
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆4

+ 𝑉𝑐𝑠𝑉𝑡𝑠
∗⏟  

𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

+ 𝑉𝑐𝑏𝑉𝑡𝑏
∗

⏟  
𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝜆2

= 0 
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The canonical37 triangle is the second from the top, which is mainly investigated by the 

Belle group (6). When people speak of the unitary triangle, they are talking about this 

one. It is customary to normalize the baseline to one, a depiction of it can be seen in 

Figure 36. 

 
Figure 36: Unitary triangle (18) 

The relation to the CKM matrix and the Wolfenstein parameters is given by these 

equations: 

𝑅𝑢 = |
𝑉𝑢𝑑𝑉𝑢𝑏

∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ | = √𝜌

2 + 𝜂2 

𝑅𝑡 = |
𝑉𝑡𝑑𝑉𝑡𝑏

∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ | = √(1 − 𝜌)

2 + 𝜂2 

and for the angles we have this easy relation: 

𝛼 = 𝜃2   𝛽 = 𝜃1   𝛾 = 𝜃3 

At Belle II we are measuring sin 2𝜃1 = sin 2𝛽 , one of the inner angles of the unitary 

triangle, and the Wolfenstein parameter 𝜆 (11). The angle 𝛽 is a measure of CP violation 

and if 𝜂 = 0 then there is no CP violation (93). 

We can measure the angles: 

sin 2𝛼 = −𝐼𝑚(
𝑉𝑡𝑑
∗ 𝑉𝑢𝑏

∗

𝑉𝑡𝑑𝑉𝑢𝑏
) 

 
37 From Greek: κανών [kanon], meaning “straight measuring rod, ruler”. 
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an example is 𝐵𝑑0�̅�𝑑0 → 𝜋+𝜋−, but this is CKM suppressed. The other angle, which is also 

CKM suppressed, can be measured by: 

sin 2𝛾 = 𝐼𝑚(
𝑉𝑢𝑏
∗

𝑉𝑢𝑏
) 

the example here is 𝐵𝑠0�̅�𝑠0 → 𝜌𝐾𝑠ℎ𝑜𝑟𝑡 . The third angle is CKM allowed: 

sin 2𝛽 = 𝐼𝑚(
𝑉𝑡𝑑
∗

𝑉𝑡𝑑
) 

an example decay is 𝐵𝑑0�̅�𝑑0 → 𝜓𝐾𝑠ℎ𝑜𝑟𝑡. (101) 

Alternatively, they can be measured with (6): 

𝜃1 = 𝜋 − arg (
−𝑉𝑡𝑑𝑉𝑡𝑏

∗

−𝑉𝑐𝑑𝑉𝑐𝑏
∗ ) = 𝛽 

𝜃2 = arg (
𝑉𝑡𝑑𝑉𝑡𝑏

∗

−𝑉𝑢𝑑𝑉𝑢𝑏
∗ ) = 𝛾 

𝜃3 = arg (
𝑉𝑢𝑑𝑉𝑢𝑏

∗

−𝑉𝑐𝑑𝑉𝑐𝑏
∗ ) = 𝛼 

The angles 𝛼  and 𝛽  are harder to measure because of interference from so-called 

penguin diagrams (95). We can measure these angles by the following decays (93): 

𝛼: 𝐵0 → 𝜋𝜋, 𝜌𝜋 

𝛽: 𝐵0 → 𝐽 ∕ 𝜓𝐾𝑠 

𝛾: 𝐵0 → 𝐷𝐾 

 

It is important to note here, that it is not sufficient to measure two angles and then 

deduce the third one, measuring all three and seeing that they add up to 180 degree is 

an essential test of the SM. 
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7 Analysis 

Do. Or do not. There is no try. 

Yoda 

7.1 Methodology 

Here I want to explain the method I used to find a suitable neural network for the task 

at hand. I was not looking for the best neural network, because it is not feasible to run 

this supposedly best network. By best network I mean the network, that will have a 

Matthew Correlation Coefficient (MCC) of plus one in every category. Let alone of 

finding the or one of the configurations which allow this result, this kind of network 

will take enormous amounts of time to be trained. This leaves us with a suitable 

network, which is optimal under the conditions, that one can find its parameters and 

also train it in a reasonable time. 

For a linear problem no hidden layer  is needed and a simple input and output layer 

will suffice (28) (47). According to (47) one or two hidden layers should be enough to 

solve any problem in which neural networks can be applied. The size of each hidden 

layer should be between the number of inputs and outputs to prevent over- or 

underfitting (47). It has been empirically shown that deeper networks perform better 

and are better at generalizing than wide networks; the issue that comes with deeper 

networks is, that optimizing them will be harder (28). There is still no method to find 

the optimal architecture of a neural network (102). 

The Loss Function and the last Activation Function are dictated by the objective. In my 

case it is a multiclass, single-label classification and thus requires crossentropy as a Loss 

Function and on the last layer should be a softmax Activation Function (27). As for the 

hidden layer, it is recommended to use tanh (32). Picking a not appropriate loss 

function for the problem will lead to an alignment problem. 

 

With this knowledge, I could start building the network. It is generally advised to 

experiment around with the architecture, it is only important to pick one metric which 

will be the measure of success (27). Then one has to create a baseline, with a very simple 

network, against which all changes are measured (27). 



83 

 

 

All these tests ran on a smaller subset of the data of about 35%. I did some preliminary 

tests on how much the amount of data affects the results and I ended up with 35%, since 

this gave me a good balance of size and speed, which again allowed me to iterate faster 

and test more setups. I only trained on Slow Pions and Beam Background at first, since 

the goal of this work is to find Slow Poins against a larger background of other events. 

Later I added the other data sets as standalone sets and as additional background. 

 

7.2 Process 

7.2.1 Finding an Optimizer 

I started with finding an optimizer. For now, we will look at training and validation 

loss curves, where we have on the x-axis the epoch and on the y-axis the error value as 

calculated by the loss function. The first objective is to get smooth, hyperbolically 

falling curves. When finding an optimizer, I used the same network architecture of 

three layers with a width of 81, with ReLU as an activation function and a learning rate 

of 𝜇 = 0.001, all tests were done with a batch size of 64 and ran for 100 epochs. For SGD 

I used a momentum of 𝛾 = 0.15, Adam ran on the recommended parameters 𝛽1 = 0.9 

and 𝛽2 = 0.999 and an 𝜖 = 1 × 10−8 . 

In order to have a better understanding, while making the loss curves quantitively 

comparable to other runs, I will use two numbers indicating the decay speed and 

amount of oscillation exhibited by the curves. Assessing the oscillation is done by curve 

fitting a rectangular hyperbola and taking the norm of the differences of the fit and the 

loss curve. I will call this the oscillation value. The smaller this number, the less 

oscillation a curve will have. The decay speed is characterized by a weighted mean of 

the loss curve, with bias towards earlier epochs e.g., the first epochs are weighted 

heavier than the later. The weights are distributed linearly. The smaller this number, 

the faster the curve decays. I will call this number the baseline. Just for one or two 

curves, these numbers will not make much sense, but as I start comparing with other 

curves, they will become handy. Figure 37 shows how fitting two loss curves looks like. 

On the left we see the baseline at 0.547 and this curve has an oscillation value of 0.004. 
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On the right the baseline is at 0.540, the baseline gap is 0.007 and its oscillation is valued 

at 0.023. This oscillation is nearly two and a half times larger, than for the training 

curve. 

 
Figure 37: Illustration of Fitting the Loss Curves 

One crucial point to understand here is that in order to have a good and generalizing 

model both baselines for training and validation should be close to each other. A 

validation baseline too low indicates, that the validation set is too small. A baseline too 

high, as compared to training, shows us that the network cannot generalize or that it is 

overfitting. (103) (104) 

All test runs here are done for 100 epochs, because I wanted to keep them comparable 

and I will do longer and shorter test runs later on. There is no prior way of knowing for 

how long to train a network, but there are markers, that can tell us when to stop. The 

validation loss curve, if it shows an uptick, will tell us when we should stop the training. 
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Figure 38: Test Runs for Optimizer 

The loss curves for the optimizer test run are in Figure 38, on the left we see the training 

loss and on the right the validation loss for each epoch. The actual loss curves are solid, 

while the corresponding fit, on which the oscillation score is based, is plotted as dashed 

line of the same color. 

The results for these runs are tabulated in  Table 9 and Figure 39 shows the same results 

graphically, furthermore the confusion matrices for all four runs, on which the scores 

are based, are given in Appendix A. What we see is, that the training loss for all four 

runs are smooth, falling quickly and they all have a baseline around 0.52 and 0.55, with 

AdaGrad having the highest value and Adam the lowest. All four loss curves have an 

oscillation value below 0.1. The validation losses look only good for SGD and 

AdaHessian, their validation baselines only differ about 0.06 points from the training 

losses. This means, that the network did not over specialize on the dataset. Validation 

loss curves for AdaHessian and SGD look good, their oscillation values are below 0.05. 

AdaGrad, orange in Figure 38, is slowly falling. The baselines between training and 

validation loss differ only for 0.002. The validation loss is oscillating strongly, still it has 

a small oscillation value of 0.066. Adam was the worst performing optimizer in these 

runs. The training loss has the lowest baseline and validation has the highest baseline. 

This is still not the worst problem; it has by far the highest oscillation value. 

Looking at accuracy, precision, Matthew Correlation Coefficient (MCC), the correctly 

and wrongly labled Slow Poins in Figure 39, we see a similar trend to what the loss 
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curves already show. Adam achieves the lowest score in all, but in mislabels, the one 

we want to minimize. AdaGrad is a little better with a MCC of 0.463 as compared to 

Adams 0.433. SGD and AdaHessian performed comparably, with a MCC of 0.549 and 

0.555 respectively. Ultimately, I decided against AdaHessian, because it more than 

doubled the training time as compared to the other three, but at the very end of this 

work I will get back to AdaHessian. From here onward I took Adam as my optimizer of 

choice. My thinking here is, that this three-layer network is too simple and that it has 

not enough parameters to adopt to the problem, as seen with Adams’s validation loss 

curve. The training loss curve of Adam was the lowest, meaning it found a minimum 

on the loss surface the fastest. Going forward, with this reasoning in mind, I kept using 

Adam.  

 

Table 9: Summary for Optimizer Test Runs 

 SGD AdaGrad Adam AdaHessian 

Training 

Oscillation 
0.004 0.002 0.002 0.004 

Training 

Baseline 
0.547 0.551 0.523 0.54 

Validation 

Oscillation 
0.023 0.065 0.17 0.045 

Validation 

Baseline 
0.54 0.549 0.568 0.534 

Baseline Gap 0.008 0.002 0.044 0.006 

Accuracy 0.775 0.731 0.717 0.777 

Precision 0.766 0.725 0.715 0.772 

MCC 0.549 0.463 0.433 0.555 

Labeled 

Correctly 
0.782 0.736 0.708 0.783 

Mislabels 0.234 0.275 0.285 0.228 
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Figure 39: Summary for Optimizer Test Runs 

 

7.2.2 Adjusting Learning Rate 

In the next two runs, I tried to adjust the learning rate, in order to get Adam’s validation 

loss to look smoother. In the last run, I used the same learning rate for all optimizers, 

in order to be able to compare them, but it was obviously too large for Adam. 

 
Figure 40: Adjusting the learning rate for Adam 

The loss curves for the two tests are in Figure 40 and the summary with all scores are 

in Table 10 and as always, the confusion matrices will be in the Appendix A, this time 

together with the visual summary. We see that in both cases the baselines for training 
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and validation loss are much closer to each other, previously the difference was 0.045, 

now it is 0.003 and 0.01, indicating, that the network could generalize better over the 

data set. The oscillation value now is just one third for a learning rate of one tenth as 

what we had before and it is even lower for a learning rate of one hundredth. The 

validation loss curves are now falling hyperbolas with some peaks during later epochs. 

 

Table 10: Summary for learning rate Test Runs 

 Learning Rate = 0.0001 Learning Rate = 0.00001 

Training Oscillation 0.002 0.002 

Training Baseline 0.531 0.546 

Validation Oscillation 0.063 0.041 

Validation Baseline 0.528 0.536 

Baseline Gap 0.003 0.01 

Accuracy 0.778 0.778 

Precision 0.773 0.764 

MCC 0.556 0.557 

Labeled Correctly 0.785 0.817 

Mislabels 0.227 0.236 

 

7.2.3 Regularization through Drop Rates 

In order to get a handle on these peaks in the validation loss curve I started with 

regularization. As I discussed earlier, there are methods to regularize over- and 

underfitting. Since all batches are normalized by this network, I am left with L1-, L2-

regularization and dropout rates. 
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Figure 41: Regularization and Adding more Layer 

We see the results in Figure 41 and the scores are in Table 11. I tested five setups with 

three- and five-layers combined with a dropout rate of 25 and 50% and seven-layers 

with 50% dropout rate. One striking result is, that the training loss baselines for 25% 

fall together at around 0.56 and for 50% at around 0.6. The baselines for validation loss 

for 25% are at 0.54 and for 50% at 0.557. The difference between the baselines for 

training and validation is a bit smaller for 25% and for 50% the baseline distances are 

at 0.046, which was the same as in the previous runs. All five curves have a hyperbolic 

shape, which was achieved by lowering the learning rate, but we still have a higher 

oscillation value. The seven-layer network has a similar shaped training loss curve as 

the three- and five-layer setups. The validation loss lies quite a lot higher, with its 

baseline at 0.634, 0.09 to 0.08 points higher as compared to the other four setups and 

the validation losses baseline is also 0.017 points higher than the training loss baseline. 

This leads to the conclusion that it generalized worse than the others. 

Now looking at the scores in Table 11, we see, that the accuracy of all four setups come 

close to each other, hovering around 77%. The precision is a bit higher for the five-layer 

setups, but both the MCC and the number of all Slow Pions found, is lower for the five-

layer setups. 

Judging from this, I should go with the three-layer 25% setup. It found nearly 80% of all 

Slow Pions and it has the second best MCC, only being edged out by the three-layer 50% 

setup. It has the lowest oscillation score and the baselines are the closest together. Still, 
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I chose the five-layer 50% setup, because it’s MCC was not far from that of the three-

layer 25% setup and it had fewer mislabels. The seven-layer setup had the fewest 

mislabels, but I decide against for the reasons given above and additionally because it 

has the lowest MCC. I will come back to this setup later again at the very end. 

 

Table 11: Summary for Regularization 

 Dropout 

50%; 3 

Layer 

Dropout 

25%; 3 

Layer 

Dropout 

25%; 5 

Layer 

Dropout 

50%; 5 

Layer 

Dropout 

50%; 7 

Layer 

Training 

Oscillation 
0.004 0.003 0.004 0.005 0.007 

Training 

Baseline 
0.599 0.566 0.565 0.603 0.617 

Validation 

Oscillation 
0.045 0.034 0.116 0.054 0.05 

Validation 

Baseline 
0.557 0.546 0.545 0.557 0.634 

Baseline 

Gap 
0.042 0.02 0.02 0.046 0.016 

Accuracy 0.778 0.773 0.773 0.767 0.702 

Precision 0.765 0.766 0.774 0.794 0.838 

MCC 0.557 0.547 0.546 0.536 0.443 

Labeled 

Correctly 
0.795 0.784 0.761 0.72 0.512 

Mislabels 0.235 0.234 0.226 0.206 0.162 

 

7.2.4 Testing for Batch Size 

Here I wanted to figure out, if increasing the batch size had any negative effects. Batch 

sizes are chosen in accordance to base two in the range of 32 to 256 (28). 
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Figure 42: Different Batch Sizes 

The loss curves are in Figure 42. The training losses all fall neatly together, with 

oscillation values below 0.008 and baselines around 0.58, only batch size 256 has a bit 

higher value. The higher baseline is due to the fact, that it falls slower. The validation 

loss shows something similar, with baselines a bit lower at 0.55. The oscillation values 

for batch size 64, 128 and 256 are all at 0.017, 0.011 and 0.006. Only batch size 32 had a 

large value, it grew by a factor of 18, from 0.006 up to 0.112. 

From Table 12 we see, that the accuracy is around 77%, so is the precision, except for 

batch size 256. Batch sizes 32, 64 and 128 had similar number of mislabels of around 

23% and a precision of 76.5%. All had a MCC of about 0.53 up to 0.54. Taking everything 

together one finds, that batch size 64 and 128 performed comparably, with 128 being 

nearly twice as fast. Going forward all runs will work with a batch size of 128. 

 

Table 12: Summary for Batch Size Test Runs 

 Batch Size 32 Batch Size 64 Batch Size 128 Batch Size 256 

Training 

Oscillation 
0.006 0.006 0.006 0.007 

Training 

Baseline 
0.583 0.584 0.584 0.591 

Validation 

Oscillation 
0.112 0.017 0.011 0.006 
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Validation 

Baseline 
0.551 0.553 0.555 0.558 

Baseline Gap 0.032 0.031 0.029 0.033 

Accuracy 0.77 0.766 0.764 0.768 

Precision 0.767 0.77 0.764 0.753 

MCC 0.539 0.532 0.529 0.537 

Labeled 

Correctly 
0.788 0.768 0.76 0.796 

Mislabels 0.233 0.23 0.236 0.247 

 

7.2.5 Convolutional Layer – Finding Kernel Size 

In the next few sections I will be looking at different setups for convolutional networks 

that are frontloaded to the linear layers. The objective for the test runs in this section 

is to find a suitable kernel size. Given the image size there are only two possibilities. 

PXD events are nine-by-nine matrices, as was discussed in PXD – Pixel detector, this 

leaves us at a kernel size of either three or five. 

 
Figure 43: Different Setups for first Convolution 

Figure 43 are the loss curves for the first test runs for the convolutional network and 

Figure 44 with Table 13 show the scores of these test runs. The training losses look good 

for all runs, the baselines and oscillations can be taken from the aforementioned table. 

The only striking thing, with zero padding and zero dropouts the training loss has a 
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much lower baseline. This means it can adapt to the training data better, but generally 

this will lead to overfitting. As for the validation loss curves, all had a baseline between 

0.544 and 0.56 and feeble oscillation, only with zero dropouts we got a bit bigger 

oscillation. This means all setups with dropouts, regardless of padding or no padding, 

could generalize well, if we only look at the loss curves.  

If we want to use a kernel size of five, it is advisable to use padding, because all scores, 

MCC, accuracy, precision, number of Slow Pions and mislabels, got improved. As for 

kernel size three, in some instances padding improves the scores. MCC and accuracy 

got better scores. With number of Slow Pions found we have a jump from 72% to 79%. 

In other instances, padding reduces the score, the precision lowers from 78% down to 

76% and the mislabels rise from 22% up to 24%. 

 

Table 13: Summary for Finding a Kernel Size 

 Kernel 

Size 3; 

Dropout 

0%; 

Padding 0 

Kernel 

Size 3; 

Dropout 

50%; 

Padding 0 

Kernel 

Size 3; 

Dropout 

50%; 

Padding 1 

Kernel 

Size 5; 

Dropout 

0%; 

Padding 0 

Kernel 

Size 5; 

Dropout 

50%; 

Padding 0 

Kernel 

Size 5; 

Dropout 

50%; 

Padding 1 

Training 

Oscillation 
0.003 0.005 0.007 0.003 0.005 0.004 

Training 

Baseline 
0.553 0.6 0.602 0.553 0.626 0.596 

Validation 

Oscillation 
0.039 0.029 0.01 0.01 0.014 0.007 

Validation 

Baseline 
0.547 0.554 0.556 0.548 0.587 0.553 

Baseline 

Gap 
0.006 0.046 0.046 0.005 0.038 0.044 

Accuracy 0.769 0.765 0.773 0.771 0.758 0.772 

Precision 0.787 0.779 0.759 0.754 0.749 0.767 
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MCC 0.538 0.53 0.547 0.543 0.516 0.543 

Labeled 

Correctly 
0.751 0.719 0.792 0.803 0.79 0.803 

Mislabels 0.213 0.221 0.241 0.246 0.251 0.233 

 

 
Figure 44: Summary for Finding a Kernel Size 

Figure 44 shows the scores in form of a bar chart. Here we see again, that the MCC for 

the five setups are all above 0.51, but below 0.55, thus all performed similarly. The same 

goes for accuracy, which is in the upper mid-seventies. If we want to minimize 

mislabels, then we should go with the blue chart. It has the highest precision and found 

even more Slow Pions, then the second-best performer in terms of mislabels. As I said, 

the blue setup is not viable, because the gap between training and validation loss are 

too big. Hence, we should use the orange setup. 

 

7.2.6 Convolutional Layer – Finding a Channel Width 

The next step was to find how many convolutional layers should be used. It makes 

again sense to think about an upper bound based on the input data. Every convolution 
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shrinks or compresses the image and thus it loses some information. This means that 

at most three convolutional layers make sense and one should rather increase the 

amounts of channels. Taking the formular for calculating the output image size after a 

single convolution, as was given in the section Convolutional layer, we can calculate: 

𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 3: 
𝑛𝑖𝑛 + 2 ⋅ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1 =

9 + 2 ⋅ 0 − 3

1
+ 1 = 7 → 49 

𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 5:
9 − 5

1
+ 1 = 5 → 25 

So, we see, if we use zero padding, we lose 32 pixels per convolution with kernel size 

three and 56 with kernel size five. Thus, is makes only sense to use at most three layers, 

since padding can only mitigate this loss of pixels and not solve the issue. As for the 

question of how many channels, I will get back to this question in this section.  

 
Figure 45: First Test Runs for Amount of Channels 

All test runs in this section ran with kernel size three and zero padding on the first 

convolutional layer, otherwise the image would lose too many pixels after the second 

layer. The loss curves are in Figure 45. The summaries are in Table 14 and Figure 46. 

Generally, we see again the pattern, that zero dropout has lower baselines, but in all 

six cases the oscillations are around the same values as we have seen in previous 

sections. As for the scores, accuracy and precision are in all cases in the upper 

seventies. There is a pattern of finding more Slow Pions, but making more mistakes. It 

showed up earlier already and will continue to show up. Also judging from Figure 46 

all setups performed comparably, thus it makes sense to go forward with just three 
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channels, since using five or seven channels did not improve the results much, while 

increasing the calculation time slightly. 

Another observation is, that the curves for three, five, seven and nine channels with 

50% have successively lower final loss values in both training and validation. 

If we look at three channels vs. just one channel, we already see, that the amount of 

mislabels increased, but at the same time also the number of Slow Pions found 

increased by the same amount. Furthermore accuracy rose, while precision fell about 

the same amount. In other words, we are left with balancing between finding more of 

what we want, while increasing our error rate or reducing the error rate with losing 

out on valuable data. Put another way we have to decide between quantity of data and 

purity of data, while having less to work with for future analyses. This is the pattern I 

already alluded to in earlier sections. 

 

Table 14: Summary for first Channels Test Runs 

 3 

Channels; 

0% 

Dropout 

5 

Channels; 

0% 

Dropout 

5 

Channels; 

50% 

Dropout 

5 

Channels; 

50% 

Dropout 

7 

Channels; 

50% 

Dropout 

9 

Channels; 

50% 

Dropout 

Training 

Oscillation 
0.002 0.001 0.004 0.005 0.004 0.005 

Training 

Baseline 
0.531 0.528 0.59 0.583 0.579 0.576 

Validation 

Oscillation 
0.006 0.006 0.006 0.007 0.006 0.008 

Validation 

Baseline 
0.527 0.528 0.548 0.54 0.536 0.533 

Baseline 

Gap 
0.004 0.0 0.042 0.042 0.043 0.044 

Accuracy 0.78 0.78 0.772 0.774 0.778 0.778 

Precision 0.763 0.767 0.754 0.755 0.758 0.774 
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MCC 0.561 0.56 0.546 0.549 0.556 0.555 

Labeled 

Correctly 
0.816 0.804 0.812 0.813 0.802 0.798 

Mislabels 0.237 0.233 0.246 0.245 0.242 0.226 

 
Figure 46: Summary for first Channels Test Runs 

Judging from Figure 46, the introduction of evermore channels only marginally 

improves the performance of the network. In the charts we see, that precision and 

accuracy stay in the upper seventy percent and that MCC for all five runs is in roughly 

0.55 and the mislabels are in the lower twenties. The runs with seven and nine channels 

ran roughly 40% to 60% longer than compared to the runs with three channels. 

 

7.2.7 Convolutional Layer – How many Convolutions? 

As I already mentioned it does not make sense to go beyond three convolutions, 

because then nothing is left of the original image. In this section I will compare two- to 

three-layers with just three and five channels and a kernel size of three. Furthermore, 

I will compare 50% dropout rate to 0% dropout rate in the linear layers of this network. 

This means there are eight different setups to this network. 
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Figure 47: First Test Runs for Number of Convolutions 

Figure 47 shows the loss curves and we see the usual, the training baselines for the zero 

dropout runs at around 0.53, while for the runs with 50% dropout close to 0.6. The 

validation baselines are at 0.53 for the zero dropouts and at 0.55 for those with 

dropouts. In all eight cases the oscillation values are below 0.03, which means the runs 

were good. These numbers were all taken from the summaries in Table 15 and Table 

16. 

 

Table 15: Summary for Number of Convolutions Test Runs, First Part 

 3 3 Channels; 

0% Dropout 

3 3 Channels; 

50% Dropout 

5 5 Channels; 

0% Dropout 

5 5 Channels; 

50% Dropout 

Training 

Oscillation 
0.001 0.014 0.001 0.005 

Training 

Baseline 
0.529 0.599 0.527 0.587 

Validation 

Oscillation 
0.004 0.026 0.005 0.015 

Validation 

Baseline 
0.527 0.555 0.526 0.542 

Baseline Gap 0.002 0.044 0.001 0.045 

Accuracy 0.781 0.773 0.782 0.777 
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Precision 0.776 0.778 0.767 0.759 

MCC 0.561 0.547 0.564 0.554 

Labeled 

Correctly 
0.806 0.775 0.811 0.803 

Mislabels 0.224 0.222 0.233 0.241 

Table 16: Summary for Number of Convolutions Test Runs, Second Part 

 3 3 3 Channels; 

0% Dropout 

3 3 3 Channels; 

50% Dropout 

5 5 5 Channels; 

0% Dropout 

5 5 5 Channels; 

50% Dropout 

Training 

Oscillation 
0.002 0.009 0.001 0.004 

Training 

Baseline 
0.532 0.597 0.526 0.588 

Validation 

Oscillation 
0.005 0.016 0.005 0.016 

Validation 

Baseline 
0.531 0.555 0.527 0.56 

Baseline Gap 0.001 0.043 0.001 0.028 

Accuracy 0.777 0.771 0.779 0.762 

Precision 0.762 0.79 0.755 0.815 

MCC 0.555 0.542 0.56 0.531 

Labeled 

Correctly 
0.797 0.737 0.805 0.697 

Mislabels 0.238 0.21 0.245 0.185 

 

Figure 48 shows the same pattern, that I mention with every test run, the higher the 

precision, the lower the number of mislabels, but this inevitably leads to lower total 

number of Slow Pions found. If we compare now two to one convolution, we see that 

there is not much of a difference in performance. One convolution yields a MCC of 0.54 

to 0.56 and two 0.53 to 0.555. With just one-layer dropouts increase the number of 

mislabels slightly from 23.5% to 24.5%, while the total number of Slow Pions remained 
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stable at around 81%. With two layers there is no correlation between dropouts or no 

dropouts, we see the number of mislabels stays roughly between 22% and 24% and 

total number of Slow Pions is around 80%. 

Something happens when using three layers. The two runs with zero dropouts are 

similar to the other six runs from this section and five runs from the previous section. 

They have a MCC of about 0.56 and mislabels of around 24% with total number of Slow 

Pions of 80%. With 50% dropout rate in the linear layers, we lose about 1% in accuracy, 

but we gain 3% to nearly 5% in precision and thus the mislabels fall to 21% for three 

channels and 18.5% for 5 channels. Interestingly enough the MCC falls a bit, down to 

0.54 for three channels and 0.53 for five channels. 

 
Figure 48: Summary for Number of Convolutions Test Runs 

 

7.2.8 Transposed Convolutional Layer 

Earlier we calculated, that given an image size of nine-by-nine pixels, it does not make 

much sense to go beyond three convolutions. There are possible remedies to this, one 

was padding, but this, as was already said, only offsets the loss of information. The 

other is using transposed convolutions, they were already discussed in Transposed 



101 

 

Convolutional Layer. One can think of something like up sampling an image, with the 

added benefit of having learnable parameters. This comes with its own caveats, like 

having more parameters, makes finding a minimum on the loss surface harder. I tested 

a simple three-layer, three channels setup and five linear layers with 50% dropout 

rates. I did four runs, one without a transposed layer and then three with a transposed 

layer at each possible point. 

 
Figure 49: Loss curves for Transposed Convolutional Layer 

Figure 49 shows the loss curve for the transposed convolution test runs. There is not 

much to say. They all have a baseline of around 0.6 for the training loss and 0.55 for the 

validation loss and an oscillation value below 0.02. 

The accuracy for all of them is at 77% and it is the highest for the second layer 

convolution. The precision is a bit more fluctuating; the second layer is the highest of 

the networks with a transposed layer, with 78% and only the pure convolutional 

network is better here with 79%. Conversely, the pure convolutional network has the 

fewest mislabels and the network with the highest mislabels found the most Slow Pions. 

The accuracy and precision of a two-layer, three channels convolution is at 77% and 

78% and 22% of mislabels. This means a transposed convolution brings neither an 

improvement over a three layer nor a two-layer setup. 
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Table 17: Summary for the Transposed Convolutional Test Runs 

 No Transposed 

Layer 

Transposed on 

First Layer 

Transposed on 

Second Layer 

Transposed on 

Third Layer 

Training 

Oscillation 
0.009 0.007 0.012 0.011 

Training 

Baseline 
0.597 0.595 0.594 0.601 

Validation 

Oscillation 
0.016 0.016 0.018 0.016 

Validation 

Baseline 
0.555 0.551 0.55 0.56 

Baseline Gap 0.043 0.044 0.044 0.041 

Accuracy 0.771 0.774 0.775 0.771 

Precision 0.79 0.744 0.78 0.768 

MCC 0.542 0.552 0.549 0.541 

Labeled 

Correctly 
0.737 0.822 0.765 0.767 

Mislabels 0.21 0.256 0.22 0.232 

 

The graphical summary is seen in Figure 50. Most notably is that the network without 

and transposed convolutional layer has the fewest number of mislabels and the 

network with a transposed layer as the first layer had the most mislabels, found the 

most Slow Pions, but had the lowest precision and the highest MCC. 
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Figure 50: Summary for the Transposed Convolutional Test Runs 

 

7.2.9 Learning Rate Schedulers 

The next few tests will be less than exhaustive and there is a far larger range of 

experiments possible. This is probably true for most tests I made here, especially for 

the optimizers, but with learning rate schedulers I have a wide range of choices and 

parameters for each scheduler, plus I can combine several schedulers. In this sense I 

understand these tests only as a survey into learning rate scheduler. 

In this and the immediately following sections I used a network with five linear layers, 

like with all convolutional test runs, with a dropout rate of 50% and one convolution 

with three channels and a kernel size of three. I used ReLU as activation function 

throughout all tests so far. 
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Figure 51: Loss Curves and Learning Rate for Scheduler Tests 

Figure 51 shows the loss curves for different learning rate scheduler, on the left are the 

training losses, in the middle are validation losses and on the right are the different 

learning rates. So far this was not necessary, because I employed flat learning rates.  

The first thing that one notices in the loss curves is, that the green curve, an exponential 

decay by 20%, the loss levels out early. This essentially means, that the network stopped 

learning. I will exclude this run from my further analysis, but I wanted to keep it, in 

order to illustrate this point. Looking at Figure 51 we see on the left, that the 

MultiStepper falls the fastest and indeed it has the lowest baseline of 0.584 and the 

lowest oscillation value at 0.001, the cyclical schedulers have stronger oscillations and 

higher baselines at 0.013 and 0.037. 

Comparing training and validation baselines reveal a gap of about 0.04. With 0.048 at 

the high end is the Exponential scheduler and 0.034 at the low end is the MultiStepper. 

For validation oscillation the MultiStepper has the strongest at 0.062, but this probably 

due to the peaks after epoch 60. These peaks could be fixed through one additional step, 

but the step height would need to be adjusted, otherwise we will get the same issue, 

which we already have with the green curve. 

One sees, that the MultiSteppers Training loss has a steep fall until epoch 12, this is 

where the learning rate decays for the first time. Like the green curves, the 

MultiSteppers loss bottoms out and remains flat. 

The fewest mislabels were achieved by the Single Cycle scheduler with just 21.4% and 

the highest got the Exponential with 24.5%. We see again, that the fewer mislabels, the 

fewer Slow Pions in total, with exception of the MultiStepper, which came close in 
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mislabels to the Single Cycle scheduler, but the number of Slow Pions correctly tagged 

correlated negatively with mislabels. 

 

Table 18: Summary for Learning Rate Scheduler 

 
5 Cycles Single Cycle 

Exponential 

γ= 0.8 

Exponential 

γ = 0.99 

Multi Step 

γ = 0.50 

Training 

Oscillation 
0.013 0.037 0.004 0.006 0.001 

Training 

Baseline 
0.614 0.602 0.654 0.609 0.584 

Validation 

Oscillation 
0.017 0.042 0.012 0.014 0.062 

Validation 

Baseline 
0.567 0.559 0.626 0.561 0.55 

Baseline 

Gap 
0.047 0.043 0.029 0.048 0.034 

Accuracy 0.775 0.772 0.673 0.769 0.743 

Precision 0.764 0.786 0.742 0.755 0.784 

MCC 0.55 0.545 0.362 0.54 0.49 

Labeled 

Correctly 
0.782 0.762 0.536 0.791 0.671 

Mislabels 0.236 0.214 0.258 0.245 0.216 
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Figure 52: Summary for Learning Rate Scheduler 

It is instructive to not just look at number, but also at a visual presentation, Figure 52 

shows this. Here the Exponential scheduler with a decay of about 20% per epoch, the 

green bar, is obviously the worst performer. In every score it is falling far behind. 

Another thing becomes pretty clear, the MultiStepper found a lot less Slow Pions, than 

the rest. Looking at the learning rate over time on the right in Figure 51 I think it 

becomes obvious, that the MultiSteppers learning rate fell to fast and that could be one 

reason, why it found less Slow Pions, than the others. 

The conclusion one can draw from these test runs is, that the learning rate not only has 

an upper bound, but also a lower bound, below which a network stops working. And 

the last point is, that the decay speed of the learning rate is of utmost importance. 

 

7.2.10 Activation Functions 

In this section I tested different activation functions, I refer to Activation Functions in 

order not to plot them here again. I tested ReLU, LeakyReLU, Sigmoid, Softplus and 

Tangent Hyperbolic. There are a few more, but these are sufficiently different from one 

another, that made them of interest, just to cover a wider ground. 
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Figure 53: Loss Curve for Activator Test Runs 

The loss curves are in Figure 53, the training losses for all five curves have a small 

oscillation value with ReLU having the highest at 0.015 and Tangent Hyperbolic the 

lowest at 0.005. The baselines are all between 0.588 and 0.601, with Tangend Hyperbolic 

having the smallest and LeakyReLU the highest. 

With validation loss it is similar, the oscillation is the smallest with ReLU at 0.013 and 

the highest with Sigmoid. The lowest Baselines have Tangent Hyperbolic and ReLU 

together at 0.542 and the highest has Softplus and thus the gaps between the training 

and validation loss baselines are between 0.051 for LeakyReLU and 0.016 for Softplus. 

The accuracies are all at 77% give or take, only Softplus is worse at 72.5%. With 

precision it is again the other way around, Softplus has the highest at 78% and ReLU 

the lowest at 76%. 

 

Table 19: Summary for Activation Test Runs 

 
ReLU LeakyReLU Sigmoid Softplus 

Tanget 

Hyperbolic 

Training 

Oscillation 
0.015 0.011 0.007 0.011 0.005 

Training 

Baseline 
0.589 0.601 0.593 0.592 0.588 
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Validation 

Oscillation 
0.013 0.015 0.064 0.055 0.037 

Validation 

Baseline 
0.542 0.55 0.568 0.576 0.542 

Baseline 

Gap 
0.047 0.05 0.025 0.016 0.045 

Accuracy 0.779 0.774 0.771 0.725 0.77 

Precision 0.762 0.766 0.777 0.781 0.769 

MCC 0.559 0.548 0.543 0.459 0.54 

Labeled 

Correctly 
0.798 0.794 0.75 0.629 0.774 

Mislabels 0.238 0.234 0.223 0.219 0.231 

 

Figure 54 shows the results visually and one notices, that all five, but Softplus, 

performed similarly. Softplus has by far the lowest MCC and found nearly only 60% of 

all Slow Pions. It is barely the best performer for mislabels. The conclusion of this test 

can only be, that four out of five activation functions worked well and that Softplus 

should remain only as the activation function for the very last layer, as it was discussed 

in Methodology. 
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Figure 54: Summary for Activation Test Runs 

 

7.3 Results 

誰にも運命はかえられないだが、ただ待つかみずからおもむくかは決められる。 

ヒイサマ 

In the previous section I presented different test runs to figure out which network 

would be suitable for the purposes of finding Slow Pions. The results were, that the 

simplest network will suffice or at least, that bigger networks will not improve the 

results substantially. My approach to this now is to run the baseline network, the 

smallest network with a single convolutional layer and the biggest network 

configuration from the previous section, for 25, 50, 100, 150 and 200 epochs. They all 

ran with Adam as the optimizer and a 5 cycles learning rate scheduler. The network 

configurations are in Table 20: Network Setups. Unlike the previous tests, I ran these 

tests with Slow Pions against all other categories, as they were discussed in Simulated 

data, combined into one. Then I will compare the results and take training and 

validation time into account in assessing the viability of the bigger network.  
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Table 20: Network Setups 

Network Small Network Medium Network Large Network 

Convolutional 

Layer 
0 1 3 

Output Channels - 3 5 

Kernel Size - 3 3 

Padding - 1 1 

Transposed 

Convolution 
- - 

no transposed 

convolution 

Activation Function - ReLU ReLU 

Linear Layer 5 5 5 

Layer Width 81 243 405 

Dropout Rate 50% 50% 50% 

Activation Function ReLU ReLU ReLU 

 

7.3.1 Long-Term Tests 

The first network I ran was the Small Network, see Table 20, the loss curves as in Figure 

55 and the scores are summarized in Table 21 and in Figure 56. 

 
Figure 55: Loss Curve for Small Network 

The training loss curve for the Small Network level all out at around 0.59, but the 

baselines for the shorter runs lay a bit higher, for 25 epochs it is at 0.602 and there 
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seems to be a convergence between 150 and 200 epochs at 0.587. There is nothing to 

say about the training oscillations, which are low for all five runs at 0.001 and 0.003 in 

case of 200 epochs. 

The validation baselines lay around 0.55, give or take and thus the gap is about 0.04, 25 

and 50 epochs runs lay bit higher. Only the gap for 200 epochs is smaller with 0.034. 

The oscillation values are equal or smaller than 0.012 up to 100 epochs. Then there is a 

jump at 150 epochs to 0.04, which is still acceptable and due to the peaks. This could be 

solved by tweaking the learning rate. The 200 epochs run has the strongest oscillations 

with 0.186. This is probably due to the cyclical learning rate scheduler, which 

maintained five cycles and I should probably adjust it, but I wanted to keep it 

comparable to the two other setups, which I have tested in this section. 

 

Table 21: Summary for Small Network 

 Small 

Network for 

25 Epochs 

Small 

Network for 

50 Epochs 

Small 

Network for 

100 Epochs 

Small 

Network for 

150 Epochs 

Small 

Network for 

200 Epochs 

Training 

Oscillation 
0.001 0.002 0.002 0.002 0.003 

Training 

Baseline 
0.602 0.595 0.589 0.587 0.587 

Validation 

Oscillation 
0.007 0.007 0.012 0.04 0.186 

Validation 

Baseline 
0.559 0.551 0.547 0.548 0.553 

Baseline 

Gap 
0.043 0.044 0.042 0.04 0.034 

Accuracy 0.76 0.762 0.765 0.764 0.758 

Precision 0.741 0.748 0.74 0.742 0.752 

MCC 0.522 0.526 0.533 0.53 0.515 
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Labeled 

Correctly 
0.8 0.788 0.834 0.804 0.749 

Mislabels 0.259 0.252 0.26 0.258 0.248 

 
Figure 56: Summary for Small Network 

The scores are graphically summarized in Figure 56. All five runs had similar scores 

for accuracy and precision, both are in the mid-seventies, all MCCs are above 0.5 and 

no run falls below 20% or above 30% mislabels. Interesting is only that the 100 epochs 

run found above 83% of all Slow Pions and is thus 3% points ahead of the others. 
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Figure 57: Loss Curves for Medium Network 

Figure 57 shows the results for the Medium Network and the scores are summarized 

in Table 22. Only the validation curve for 200 epochs exhibits some peaks, which occur 

past epoch 100. The oscillation values for training loss are all less or equal to 0.002 and 

the baselines are near 0.58 with a low point for 150 epochs. The validation loss curves 

have oscillation values less or equal to 0.012, with the exception of the 200 epochs run. 

There the oscillation is 0.054, this is due to the aforementioned peaks. The baseline gap 

is relatively constant with 0.038. 

 

Table 22: Summary for Medium Network 

 Medium 

Network for 

25 Epochs 

Medium 

Network for 

50 Epochs 

Medium 

Network for 

100 Epochs 

Medium 

Network for 

150 Epochs 

Medium 

Network for 

200 Epochs 

Training 

Oscillation 
0.001 0.001 0.001 0.002 0.002 

Training 

Baseline 
0.587 0.583 0.582 0.578 0.58 

Validation 

Oscillation 
0.012 0.008 0.009 0.012 0.054 

Validation 

Baseline 
0.549 0.543 0.543 0.54 0.542 
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Baseline 

Gap 
0.038 0.04 0.038 0.038 0.038 

Accuracy 0.763 0.762 0.761 0.767 0.764 

Precision 0.756 0.758 0.751 0.754 0.737 

MCC 0.526 0.524 0.521 0.534 0.531 

Labeled 

Correctly 
0.77 0.775 0.76 0.798 0.813 

Mislabels 0.244 0.242 0.249 0.246 0.263 

 
Figure 58: Summary for Medium Network 

Figure 58 shows the visual representation of the scores for the Medium Network. All 

scores again fall to in the ballpark and they are similar to what we had before. The 

accuracy and precision are again in the mid-seventies. Generally, the Medium Network 

got lower scores for number of Slow Pions found, with an uptick for longer training 

time. It had slightly less mislabelled, with the exception for the 200 epochs run. 

Whereas the Small Network got around 25% mislabels, the Medium Network gained 

half a percentage. 
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Figure 59: Loss Curves for Large Network 

We are coming finally to the Large Network. Its loss curves are in Figure 59 and the 

scores are summarized in Table 23. Now all oscillations for training loss are equal to or 

less than 0.004 and the baselines are again at 0.580, with a convergence toward 0.577 

for 150 epochs. The validation loss has an oscillation value of 0.006 or less, which is so 

far the best scores and a baseline at 0.54 with a convergence toward 0.537 for 150 

epochs. The baseline gaps stay constant at 0.04. 

The accuracy increases with more epochs, starting at 76.3% with 25 epochs and ending 

at 76.7% for 150 and 200 epochs. The precision declines from 76.1% for 25 epochs down 

to 74.7% for 200 epochs. The number of Slow Pions found and the mislabels increases 

from 77.7% and 23.9% for 25 epochs up to 81.1% and 25.3% for 200 epochs. 

 

Table 23: Summary for Large Network 

 Large 

Network for 

25 Epochs 

Large 

Network for 

50 Epochs 

Large 

Network for 

100 Epochs 

Large 

Network for 

150 Epochs 

Large 

Network for 

200 Epochs 

Training 

Oscillation 
0.001 0.001 0.002 0.002 0.002 

Training 

Baseline 
0.582 0.58 0.578 0.577 0.577 
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Validation 

Oscillation 
0.002 0.004 0.005 0.006 0.005 

Validation 

Baseline 
0.544 0.542 0.539 0.537 0.537 

Baseline 

Gap 
0.038 0.037 0.039 0.04 0.04 

Accuracy 0.763 0.765 0.765 0.767 0.767 

Precision 0.761 0.754 0.754 0.748 0.747 

MCC 0.526 0.531 0.531 0.536 0.535 

Labeled 

Correctly 
0.777 0.802 0.798 0.807 0.811 

Mislabels 0.239 0.246 0.246 0.252 0.253 

 
Figure 60: Summary for Large Network 

Figure 60 confirms what I have descripted so far. There is a slight uptick in accuracy, 

MCC, amounts of Slow Pions found and mislabels with an increase in training time and 

a drop in precision. Overall, the scores are similar. 
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7.3.2 Tests against Single Particles 

Now with previous results at hand, I want to look into how the network can 

differentiate between Slow Pions and specific other particles. This should give some 

insight into which events can make problems and from which particles should stem 

the most mislabels and against which the network losses most Slow Pions. 

The long-term tests were done with every category combined into one against Slow 

Pions.  Here I will pick one event at a time and compare it against slow pions. I will 

keep balanced training sets, meaning, that both categories will be at the same size, but 

I will utilize the biggest possible set per category. I will test the following: 

• Anti-Deuterons (DD) 

• Protons (PP) 

• Pions (PI) 

• Kaon (KK) 

• Muon (MM) 

• Electrons (EL) 

• Beam Background (BB) 

• and Gammas (GA) 

The second last category was tested already in the section Process in order to build up 

this network. The last category will not be very representative, since there are not 

many gamma events, as is shown in Figure 16 in section Simulated data. 

The tests in this section will use the Large Network, its configuration is in Table 20. I 

concluded from the last section, that this network will have highest capability to 

generalize over the data sets. Determining from the last section I will use 150 epochs, 

since 200 epochs ran 25% longer, but did not improve a networks performance 

sufficiently. I plotted the training results from the long-term tests according to number 

of epochs, comparing network sizes. These plots will be in the Appendix A. They show 

again, that 150 epochs gave the best performance and that the Large Network could 

generalize the best. 
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Figure 61: Loss Curves for the Single Particle Tests 

As I already mentioned, here I tested the performance against individual particles in 

order to find out where the network fails. This is assuming a level of independence for 

identifying these particles. Figure 61 shows the loss curves for these test runs and Table 

24 summarizes the results. 

The size of the data set for gammas is 1.5% of others, this makes it not a viable option 

for a comparison to the others. Its loss curve can be seen in grey in Figure 61. This is 

why I will ignore it for now. 

The training oscillations are equal or less than 0.004, the biggest oscillations happened 

with Beam Background. Validation oscillations are a tad bit larger, but stay below 0.016, 

this value was achieved against electrons. 

The baselines, training and validation, have a large spread. In both cases the sequence 

is the same, the highest are the Anti-Deuterons baselines at 0.644 and 0.626 with the 

smallest gap with 0.018. This shows good generalization, but looking at the scores 

shows, that the Anti-Deuterons show the highest mislabels score of nearly 35% and the 

smallest number of Slow Pions at 66%. This run has also one of the lowest MCCs of this 

work with a score of 0.283, showing a weak correlation. 

The next baselines are for Protons at 0.589 and 0.556 with a gap of 0.033. Again, this 

would imply good generalization, but here we have the second worst scores for 

mislabels and number of Slow Pions at 26.3% and 77.6%. Here the MCC is 0.484, which 

is more in line of what we have seen so far. 
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Beam Background has the next baselines at 0.567 and 0.523 with a gap of 0.044, this is 

close to the gaps of the other particle test runs. It is the third worst in mislabels and 

number of Slow Pions found with 23.1% and 79%. This is right in between the results 

for Anti-Deuterons and Protons and the remaining particles. Beam Background 

achieved a MCC of 0.567, which is a stronger correlation than what we had in the long-

term tests. 

The remaining particles, Pions, Kaons, Electrons and Muons, have training baselines 

between 0.539 and 0.546, with Muons having the lowest. Their validation baselines are 

in the range of 0.498 and 0.486, again with Muons being the lowest. The gaps are around 

0.05, with Muons having the biggest gap. In all cases the amount of mislabels was below 

20%. Pions had the most mislabels at 19.9% and Muons the fewest at 18.4%. The number 

of Slow Pions exceeded 82% in these four cases. This together gave MCCs of more than 

0.62, showing stronger correlations than any other run so far. 

 

Table 24: Summary for the Single Particle Tests 

 DD PP PI KK MM EL BB GA 

Training 

Oscillation 
0.002 0.003 0.002 0.003 0.003 0.003 0.004 0.017 

Training 

Baseline 
0.644 0.589 0.544 0.546 0.539 0.543 0.567 0.644 

Validation 

Oscillation 
0.003 0.007 0.01 0.012 0.011 0.016 0.008 0.02 

Validation 

Baseline 
0.626 0.556 0.494 0.498 0.486 0.494 0.523 0.62 

Baseline 

Gap 
0.018 0.033 0.05 0.049 0.053 0.049 0.044 0.025 

Accuracy 0.642 0.742 0.816 0.812 0.827 0.818 0.784 0.67 

Precision 0.652 0.737 0.801 0.813 0.816 0.804 0.769 0.657 

MCC 0.283 0.484 0.632 0.624 0.655 0.636 0.567 0.34 
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Labeled 

Correctly 
0.66 0.776 0.833 0.823 0.842 0.829 0.79 0.747 

Mislabels 0.348 0.263 0.199 0.187 0.184 0.196 0.231 0.343 

 
Figure 62: Summary for the Single Particle Tests 

Figure 62 shows the graphical representation of the summary from Table 24. From the 

charts and what we discussed above, we can deduce, that the network has minor issues 

with the lighter particles, such as Mesons and Leptons. Anti-Deuterons are clearly out 

of line with the other particles, except for gammas. It has the lowest accuracy, precision 

and MCC, found the fewest Slow Pions and has the most mislabels. Less pronounced, 

but still clearly visible is the performance for protons. Beam Background falls close to 

protons, assessing it purely visually, so I can assume, that the network is also struggling 

with it. In the previous section the MCC of the Large Network for 150 epochs was at 

0.536. The mean value of MCCs from these runs is 0.554, if I include gammas, then the 

MCC falls down to 0.528. The score for the previous falls right between these two. 
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7.3.3 Multiclass Tests 

 
Figure 63: Loss Curves for Multiclass Test Run 

Figure 63 shows the loss curves for a multiclass test run. I tested the same categories as 

I descripted above, but this time all at the same time. The baselines here are at 2.018 

for training and 1.982 for validation loss and it has a baseline gap of 0.036. The training 

loss has an oscillation of 0.002 and the validation has 0.006. 

 
Figure 64: Loss Curves for Binary Test Runs 

Figure 64 shows the loss curves for the Large Network for 150 epochs in blue and in 

orange we see the averaged curves for the individual particle tests from the most recent 

section. The baselines for the binary test are at 0.577 and 0.537 with a gap of 0.04 and 

the averaged baselines for the individual particles are at 0.568 and 0.525 with a gap of 

0.042. While the baselines are not directly comparable to that of the multiclass test run, 
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the gap can be compared, as it is a difference to be minimized. The gaps for the 

multiclass run is at 0.036. The gap for the binary run and the average gap for individual 

particle runs are at around 0.04. The oscillation values are the same as for the 

multiclass test. Since the loss value scales with number of categories we can compare 

the multiclass run, with the individual runs and the binary run, but factoring out the 

number of classes. In order to keep it comparable to the other runs, which were all 

binary, I will factor out only the multiclass run. This gives us a training baseline at 0.505 

and a validation baseline at 0.496. The difference to the binary class and the averaged 

individual classes are smaller than 0.08 and 0.05 points for training and validation 

baselines, respectively. Thus, concluding from the loss curves alone the network could 

handle the multiclass test well. 

 
Figure 65: Confusion Matrix for Muliclass Test Run 
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Each category made up one eighth of the full data set, this means 12.5% should be the 

goal of in each category. We see in Figure 65 the confusion matrix for the multiclass 

test run. I am talking about the diagonal elements of the matrix. For Slow Pions there 

is a score of 5.93%, this is less than half of the ideal score. The MCC for Slow Pions is 

0.33, which is indicates a weak correlation. 

Protons and Pions are below 1% and their MCC, taken from Figure 70, show that the 

network was struggling and was more or less guessing randomly. Not many Pions or 

Protons were guessed to be Slow Pions. 

Anti-Deuterons is at 4.18%, that is one third of what would have been perfect and the 

MCC is 0.18, indication a weak correlation. 3.34% of all Anti-Deuterons were guessed to 

be Slow Pions, this fits well with the results from the previous section for Anti-

Deuterons 

Beam Background is the second best at 5.85%, this is less than half of what it should be. 

Most wrongly labeled Beam Background events were assigned to be Slow Pions. It has 

the best MCC of 0.42. 

The whole line for Kaons is just zero, this means, that noting was guessed to be a Kaons. 

This gave us the best accuracy at 87%, since most events are not Kaons, but the 

precision was the lowest at 0%. I cannot tell what happened here. 

Electrons were guessed to be anything, but the fewest guessed to be Slow Pions. For 

Muons we have a similar picture, also here were the fewest guesses for Slow Pions. 

That is why their MCCs were close to zero, but it still fits in with the individual tests 

from the previous section. 
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Figure 66: Compressed Confusion Matrix for Binary Test Run 

Figure 66 shows a collapsed version of Figure 65. The upper, left corner remained; these 

are the Slow Pions. The left most column was summed up to a single cell, these are the 

missed Slow Pions. The upper most row was summed up; these are the mislabels for 

Slow Pions. The remaining block was summed up to one cell, this is the rest of the data 

set. We now can compare this to Figure 67. We see, that we have fewer mislabels and 

missed fewer Slow Pion events in the multiclass test run. 
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Figure 67: Confusion Matrix for Binary Test Run 

I also wanted to compare the averaged confusion matrix of the individual runs, Figure 

68, with the run of all categories combined into one, Figure 67. The first thing to notice 

is, that the amount of data for the individual runs are half of that for the run where all 

classes were combined. Apart from that, the scores are close and differ for about 1% or 

2%, I attribute this small difference to the smaller data set. 
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Figure 68: Average Confusion Matrix for Individual Particle Tests 

We see all scores summarized in Table 25. I already talked about most of what can be 

deduced from it, besides I referenced to this table throughout this section many times. 

Table 25: Summary for Multiclass and Binary Class Test Runs 

 Multiclass Binary Means 

Training 

Oscillation 
0.002 0.002 0.002 

Training Baseline 2.018 0.577 0.568 

Validation 

Oscillation 
0.006 0.006 0.005 

Validation Baseline 1.982 0.537 0.525 

Baseline Gap 0.036 0.040 0.042 

Accuracy 0.834 0.767 0.777 

Precision 0.359 0.748 0.770 

MCC 0.328 0.536 0.554 

Labeled Correctly 0.495 0.807 0.793 

Mislabels 0.641 0.252 0.230 
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Figure 69: Score Summary for Multiclass and Binary Class Test Runs 

Figure 69 shows a visual representation of the scores in regards to Slow Pions only. 

While accuracy is above 80% for the multiclass test, all other scores are far worse, the 

precision is below 40%, the MCC is below 0.4, not even half of all Slow Pions were found 

and more than 60% of what was labeled Slow Pion, was incorrectly labeled. The other 

two runs performed similarly and to the extent of what we expected. 
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Figure 70: Score Report for Multiclass Test Run 

Figure 70 shows all the scores from Figure 69 for every single category. The accuracy 

is in all cases strong, but the precision is plummeting on all cases. We also notice here 

how many events were wrongly categorized, especially Electrons, Muons and Protons. 

The conclusion for these tests has to be, that testing for individual particles and 

combined backgrounds makes a whole lot more sense and that one should fray away 

from training every category at once. It is much more helpful to train specifically for 

the particles one is trying find, than to do it all at once. 

 

7.3.4 Tests against Larger Combinations 

In this section I continue the network setup from the previous section. This means the 

Large Network will be run for 150 epochs. This time it is running on different data set 

configurations. I combined several particles together into what I call Heavy 
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Background, containing Protons, Anti-Deuterons, Kaons and Pions. The next combined 

data set is Kaons and Pions and the last is Electrons, Muons and Gammas, it is called 

Light Background. Since I am using balanced datasets, all runs will run with roughly 

thrice as many Slow Pions as compared to the single particle runs. 

 
Figure 71: Loss Curves for Grouped Particles 

Figure 71 shows what was already to be expected from the previous section, the scores 

are summarized in Table 26. The Heavy Background, performed weak, in the sense, 

that it has the highest baselines at 0.587 and 0.551 for training and validation loss, it 

has the smallest gap at 0.036. The heavy particles achieved a MCC of 0.499, which is just 

slightly smaller than the mean MCC for the individual particles at 0.505. 

The Medium Background particles have their baselines at 0.544 and 0.497 with a gap of 

0.047. The validation loss has the only oscillation value out of line with the others at 

0.069. There are several peaks throughout the curve. Interestingly the individual 

particles have half the validation oscillation at 0.012 and 0.011. This run had a MCC of 

0.620, which is nearly equal to the mean MCC of the individual particles at 0.628. 

The Light Background particles, performed good, they have the lowest baselines at 

0.539 and 0.488 with a gap of 0.051. This is the largest gap of the three runs. The 

validation oscillation is still small, but interestingly even larger than for the Heavy 

Background particles, at 0.012. The MCC is at 0.644, which is larger than the mean value 

for the individual particles, which is at 0.544. This score included the Gammas, if we 
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exclude them, the mean MCC is 0.645, which is spot on. It makes sense to exclude 

Gammas, since their data set is significantly smaller than that for Electrons and Muons. 

 

Table 26: Summary for Grouped Particles 

 
Heavy Background 

Medium 

Background 
Light Background 

Training 

Oscillation 
0.001 0.002 0.002 

Training Baseline 0.587 0.544 0.539 

Validation 

Oscillation 
0.004 0.069 0.012 

Validation Baseline 0.551 0.497 0.488 

Baseline Gap 0.036 0.047 0.051 

Accuracy 0.748 0.806 0.822 

Precision 0.725 0.765 0.821 

MCC 0.499 0.62 0.644 

Labeled Correctly 0.82 0.883 0.83 

Mislabels 0.275 0.235 0.179 
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Figure 72: Summary for Grouped Particles 

Figure 72 shows the visual summary of the scores for the three grouped runs. The 

heavy particles had the lowest accuracy and precision at only 74.8% and 72.5%, which 

is reflected in the fewest numbers of Slow Pions found and the largest mislabels at 82% 

and 27.5%. The mean value of Slow Pions from the last section is at 77.3%, which is 

quite a bit smaller. The mean value for mislabels is at 24.9%, which is also reduced. 

The Medium Background particles have the second highest accuracy and precision at 

80.6% and 76.5%. This run found the most Slow Pions out of these three and it had the 

second most mislabels at 88.3% and 23.5% respectively. The mean number of Slow 

Pions is at 82.8 %, again it is a bit less if we test against individual particles. The mean 

mislabels are at 19.3 % and here we are again at a larger value. 

For the light data set I will exclude Gammas from the mean scores for the 

aforementioned reasons. The accuracy and precision were the highest in this run, at 

82.2% and 82.1%. The number of Slow Pions found and the number of mislabels are at 

83% and 17.9%. The mean values for these scores are 83.6% and 19%. The number of 

Slow Pions found is nearly identical and the number of mislabels is lower for the 

grouped particles. 
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The conclusion I draw from this is, that testing heavier particles in a grouped manner 

helps in finding Slow Pions against a larger background of other particles, but it also 

increases the number of mislabels. This holds true for the heavy and medium 

background. Lighter particles can be grouped, it even helps decreasing the number of 

mislabels. 

 

7.3.5 The runs against Slow Electrons 

In this section I want to test the Large Network for 150 epochs against so called Slow 

Electrons. In one run I want to employ all events and, in another run, I want to exclude 

all events, where only one pixel lights up in the nine-by-nine PXD images. This should 

help in lowering the ambiguity posed by single pixel events and thus lower mislabels. 

One should keep in mind, that this also lowers the number of Slow Pions, even if the 

percentage number is larger, because the overall number of events is lowered. This 

was shown in the section Simulated data. 

 
Figure 73: Loss Curves for Slow Electrons 

Figure 73 shows us the loss curves for the Slow Pions against Slow Electrons. The scores 

are summarized in Table 27. The first thing one sees is that the baselines for the full 

data sets lay quite a bit lower, 0.541 and 0.491 as compared to 0.564 and 0.520 for the 

no single pixels run. The gaps are at 0.05 for the full data set and 0.044 for the no single 

pixels run. The oscillation scores are larger for the no single pixles run. All this shows, 
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that it was learning slower, which can entirely be explained by the fact, that the data 

set is much smaller. 

 

Table 27: Summary for Slow Electrons 

 All Events No Single Pixel Events 

Training Oscillation 0.003 0.004 

Training Baseline 0.541 0.564 

Validation Oscillation 0.009 0.01 

Validation Baseline 0.491 0.52 

Baseline Gap 0.05 0.044 

Accuracy 0.82 0.792 

Precision 0.82 0.789 

MCC 0.641 0.583 

Labeled Correctly 0.82 0.796 

Mislabels 0.18 0.211 

 

Figure 74 shows the summary visualized. My interpretation from earlier, that the 

difference is just due to the size of the data sets, is further strengthened.  The accuracies 

are at 82% and 79.2%, this is a gap of 2.8%. The precisions are at 82% and 78.9%, this is 

a gap of 3.1%. The number of Slow Pions found fell from 82% down to 79.6% by 2.4% 

and the mislabels rose by 3.1% from 18% up to 21.1%. The biggest changed was in MCC, 

the full data set had 0.641 and the no single pixels had 0.583. Overall, all scores changed 

by about 3% and all the charts lay pretty close. 

A further comparison to ordinary Electrons shows, that the accuracies are the same, 

within a margin of error, at 82% for Slow Electrons and 81.8% for ordinary Electrons. 

The precisions were at 82% and 80.4%. There is not much in change for these data sets. 
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Figure 74: Summary for Slow Electrons 

 

7.3.6 No Single Pixel Runs 

Prompted by the results from the tests against Slow Electrons, I wanted to verify them 

by testing the Large Network with no single pixel events. I will keep the description 

here as short as possible, since a lot will repeat from earlier sections. 

 
Figure 75: No Single Pixels against Individual Particles 
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The loss curve in Figure 75 look no different than the results for the full data sets. The 

scores are summarized in Table 28. The oscillation value for training and loss for all 

runs is less or equal to 0.01 this results in a mean value of 0.003 for training and 0.007 

for validation. Both scores are a negligibly smaller than 0.005 and 0.010 for the full sets. 

Again, the highest baselines are for Anti-Deuterons, followed by Protons with other 

particles in these runs laying relatively close to each other. The gaps between baselines 

decreased, which indicates a better generalization, but this decrease is inconsequential. 

More interesting is, that the MCC fell from 0.554 down to 0.506, on a mean. Even though 

I removed every event, that could potentially be ambiguous, the correlation between 

correct guesses and labels weakened. Overall accuracy and precision fell each by 2.5% 

and 2.2% and with this 2.7% fewer Slow Pions were found and the mislabels increased 

for 2.2%. The only test, that profited from the exclusion of single pixel events was beam 

background, here 2.8% more Slow Pions were found. It is important to remember, that 

this does not mean, that in total more Slow Pions were found, but relative to the amount 

data used in these runs. Against beam background was also the lowest increase in 

mislabels of 0.9%. Protons were neutral in the decrease of Slow Pions found, but here 

the number of mislabels jumped the strongest with 4.5%. Anti-Deuterons had the 

biggest drop in Slow Pions found and was close to the mean increase in mislabels with 

2.6%. 

 

Table 28: Summary for No Single Pixels Run 

 DD PP PI KK MM EL BB 

Training 

Oscillation 
0.002 0.003 0.003 0.004 0.004 0.004 0.003 

Training 

Baseline 
0.66 0.609 0.561 0.57 0.56 0.564 0.57 

Validation 

Oscillation 
0.003 0.005 0.009 0.009 0.009 0.01 0.004 

Validation 

Baseline 
0.647 0.58 0.516 0.528 0.518 0.52 0.527 
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Baseline 

Gap 
0.012 0.028 0.045 0.042 0.042 0.044 0.044 

Accuracy 0.613 0.714 0.792 0.784 0.795 0.792 0.779 

Precision 0.626 0.692 0.79 0.783 0.796 0.789 0.76 

MCC 0.227 0.43 0.584 0.567 0.589 0.583 0.56 

Labeled 

Correctly 
0.589 0.776 0.794 0.791 0.798 0.796 0.818 

Mislabels 0.374 0.308 0.21 0.217 0.204 0.211 0.24 

 

 
Figure 76: Summary for No Single Pixels Run 

Figure 76 paints a very similar pictures to what Figure 62 already draw. These graphs 

make the worsening of the results more apparent. Anti-Deuterons and Protons fall 

further behind and the distinction between the heavier and lighter particles becomes 

stronger. The only improvement becomes clear as well, the distance between Beam 

Background and the lighter particles vanishes. 

The general conclusion from this can only be, that excluding single particle events does 

not improve the quality of the categorization done by the network. This holds true 
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especially for heavier particles such as Protons and Anti-Deuterons. The slight decrease 

in score can still be entirely due to the fact, that the training and validation data sets 

were smaller and thus the network had less for work with. This seems possible due to 

the fact, that the decreases are only around 2%. In this sense we got similar results as 

we got with no single pixels for Slow Electrons. 

 

7.3.7 One Last Test Run 

Throughout my analysis I alluded to this last experiment, where I use a linear network 

with 7, 5 and 3 layers and the AdaHessian optimizer and I ran it for 200 epochs. The 

reasoning for these test runs was, that AdaHessian showed a lot of promise very early 

on, without tinkering. I wanted to test it on a simpler network, in order to keep the time 

requirements short. 

 
Figure 77: Loss Curves for AdaHessian 

Figure 77 shows the loss curves for the 200 epoch test runs with AdaHessian optimizer. 

The baselines for the 7-layer setup are at 0.659 and 0.683, with a gap of 0.024, which is 

smaller than the gaps for the Small, Medium and Large Network. Their gaps are all 

larger than 0.034 for 200 epochs. Still the baselines were lower. The validation 

oscillation values are at 0.045, 0.043 and 0.035.  This is around seven to nine times 

larger, than 0.005 for the Large Network for 200 epochs. 

 



138 

 

Table 29: Summary for AdaHessian Test Runs 

 7 Layers 5 Layers 3 Layers 

Training 

Oscillation 
0.015 0.003 0.004 

Training Baseline 0.659 0.634 0.625 

Validation 

Oscillation 
0.045 0.043 0.035 

Validation Baseline 0.683 0.609 0.592 

Baseline Gap 0.024 0.025 0.033 

Accuracy 0.611 0.756 0.758 

Precision 0.773 0.745 0.729 

MCC 0.276 0.513 0.519 

Labeled Correctly 0.315 0.776 0.809 

Mislabels 0.227 0.255 0.271 

 

Figure 78 and Table 29 are the summaries for these three runs. Seven layers only 

achieved an accuracy of 61.1%, which quite a bit lower than 75% for the five- and three-

layer setups. The precisions are close at 77.3%, 74.5% and 72.9% for the seven-, five- 

and three-layer setup. 

The three- and five-layer setup performed comparably, they have both a MCC of 0.51, 

which is spot-on with the long-term tests for all three networks. Both AdaHessian 

setups found more than 77%, the smaller network found more than 80%, but also had 

the most mislabels. The seven-layer network had the weakest MCC at 0.276, the MCC 

for the Small, Medium and Large Network for 200 epochs all were above 0.5, nearly 

twice as large as this. It found the least number of Slow Pions at 31.5% and the fewest 

mislabels at 22.7%. There is a large gap in Slow Pions correctly labeled of at least 46.1% 

and the small gap in mislabels of 2.8%. 

Taking this all together, the seven-layer network did not perform well. The five- and 

three-layer performed similarly, but they did not outperform the three networks from 

the long-term test, while running longer. The only argument speaking for AdaHessian, 
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would be this. One trains the Large Network with AdaHessian for 200, 300, 400 epochs 

and so on, of course, after tweaking the learning rate. Then one has a well-trained 

network. The optimizer is only involved in training and cannot hinder the evaluation 

performance. Together with the fact, that one has to train only once, it might be worth 

using AdaHessian going forward. 

 
Figure 78: Summary for AdaHessian Test Runs 
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8 Summary & Concusions 

Hooray! A Happy Ending For The Rich People. 

Dr. John A. Zoidberg 

 

8.1 What did we achieve? 

Throughout this work we saw relative similar performances by larger and smaller 

network setups, with an accuracy of ranging from 76% for the Small Network and small 

increase for the Medium Network up to nearly 77% for the Large Network. The 

precision stayed around 75% for the Large Network, it was a bit lower for the Medium 

Network and it was around 74% for the Small Network. We saw, that smaller networks 

require less training, otherwise they will lose generalization. Bigger networks could 

increase their capabilities given longer training, with the catch, that with more time 

the number of mislabels also increased. 

Judging from the loss curves, the Large and Medium Network could generalize better 

than the Small Network. This was indicated by the smaller baseline gaps for the larger 

networks and the higher oscillations for the smaller networks. 

When I tested Slow Pions individually against every particle, we saw, that Anti-

Deuterons and Protons were revealed to be very challenging. They had the lowest 

accuracy of all particles at 64% and 74%, while all others were above 80%, with the 

exception of Beam Background at 78%, which can be explained by the smaller size of 

the data set. Anti-Deuterons and Protons also produced the lowest precision of 65% and 

74%, where all others were above 80%, except for Beam Background, which was at 

77%. 

These scores were all confirmed by two further tests, one where I combined the smaller 

sets into three larger sets and one where I excluded single pixel events. The single pixel 

events were about 2% to 3% worse in every score, as compared to the full sets. This can 

entirely be due to the smaller size of the sets. The combined sets achieved accuracies 

of 75%, 80% and 82%, the averaged accuracies for the individual sets corresponding to 

the combined sets are 75%, 81% and 81%. These scores are matching within a margin 

of error. The same holds true for precision, with 75%, 77% and 82% for the Heavy, 



141 

 

Medium and Light Backgrounds and the respective averaged precisions of 75%, 81% 

and 80%. Only the Medium Background had a bit worse precision if tested in a 

combined manner. 

The Large Network, with which these tests were done, achieved an accuracy of 77% 

and a precision of 75% for 150 epochs. The averaged accuracy for the individual tests 

is 79% and the precision is at 79%. Here running each particle individually slightly 

improved the scores. 

In a realistic setting it is not possible to tests each set individually. If it were, then we 

would already have the sets separated out and there would be no need for using a 

neural network in order to sort the particles out. 

In conclusion I can say, that the Large Network for 150 epochs performed well and if it 

would be possible to separate Anti-Deuterons and Protons out before hand, then this 

network could achieve an accuracy of above 80% with a precision near 80%. Guessing 

from the individual tests, most mislabels came from Anti-Deuterons and Protons. 

I tested Slow Pions against Slow Electrons in much the same manner as did Erwin Do38. 

Unlike him, I only tested full data sets and left out single pixel events, he did more 

extensive tests here. My Network achieved an accuracy and precision of 82%, excluding 

single pixel events decreased this number by the familiar 3%. The tests against 

ordinary Electrons got scores of 82% for accuracy and 80% for precision, thus there 

was no performance impact for Slow Electrons vs. Slow Pions as compared to Electrons 

vs. Slow Pions. 

The goal of this was it to employ a neural network in order to find Slow Pions within a 

larger background of other particles and beam-background. This was achieved to the 

extent, that a simpler network could find the majority of Slow Pions with a high 

precision of 80%, while keeping training time low. Thus, also validation can be done 

swiftly, even for enormous data sets and on weaker hardware. 

 

 
38 Ludwig-Maximilians-Universität München, 22. June 2020 
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8.2 What needs to be done? 

While I conducted many tests, there is still a lot of room for experimentation. One could 

do more tests with different dropout rates for each layer, test deeper networks and test 

narrower layers. Furthermore, I only made a small survey of learning rate scheduler 

and it might be worthwhile to try more settings and tune the learning rate better. The 

same goes for activation functions, but to a lesser extent, since they have fewer 

parameters. Another shortcoming of my network was, that I only employed squared 

kernel sizes and it might improve the networks performance if it would look for 

vertical and horizontal patterns. Testing more setups with more layer combinations of 

convolutional and transposed convolutional layers might also lead to better pattern 

recognition and increase the networks capabilities. 

As was indicated by several of my tests in this work, I do not think that even bigger 

networks will improve much of the capabilities of differentiating between data sets, 

especially if we are only looking at one category against everything else. In this case 

going larger even decreased the performance. Still, it can be of interest to test bigger 

networks on multilabel tests, since maybe more parameters will enable the network to 

adapt to more characteristics within the data sets. This again will require more 

tweaking of all hyper parameters, especially learning rate and epochs. 

It could give some insights into what is causing the most mislabels and against which 

data set the most Slow Pions, if the individual labels for each particle would be retained, 

even in the case where they are combined to a bigger background. Then one could 

check the mislabels, from which category they came. So far, I can only make inferences 

from the individual tests. 

In terms of analysis and visualization, there is also all lot more to do. One could 

compare loss curves not just for each set of runs, like I did, but also more cross 

comparisons. For example, plotting the loss curves for Small, Medium and Large 

Network for epochs and not network sizes or comparing individual particles with their 

respective combined backgrounds. I tried to facilitate these kinds of comparisons by 

employing what is called oscillation and baselines, I also did not want to exhaust the 

reader too much, with too many graphs and plots. Additionally, one should look at the 
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convergences of each of the loss curves fits I made. This might give further indications, 

which setups will achieve given enough time, without actually running for that amount 

of time, or at least one can tell for how long it would be wise to train. 

I tried linear, convolutional and transposed convolutional layers in my network. There 

are more kinds of layers, as I already mentioned throughout this work. There are 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, 

which both belong to the same class and are mostly applied in cases of sequential data, 

like speech and text. This is not strictly the case with PXD data, which are independent 

events. The next type of network one could test are Graph Neural Networks (GNNs), 

which can find relations between objects and events and organize them into graphs 

(105), which is also not the case for PXD data. 

Besides implementing more features in the code, I would restructure it. Training and 

validation should be done separately, the same holds for plotting and analyzing the 

output. This should be done with different files, instead of all on just one big file. The 

output should be more diversified. While I could do all my plots from the log files, it 

would be tremendously helpful to write out files that can be plotted without any further 

manipulation. 

If PXD data could be processed in sequences and not like independent events, RNNs 

and LSTMs could yield improvements and maybe within the PXD data are hidden 

metadata containing graph like relations, which then would make GNNs sensible. This 

might be the case if one included the event coordinates, with were mentioned in the 

section Simulated data. This is just speculation in my part. 

Lastly, neural networks performance is strongly dependent on the representation of 

the data. This means, one should preprocess the data in order to find a more optimized 

representation and eventually find better results. 
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A. Additional Graphs 

Event Coordinate Distributions 

 

 

 

 

 



154 

 

 

 

 

 

 



155 

 

 

 

 

 

 



156 

 

 

 



157 

 

Additional Plots for Long-Term Test Runs 
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Confusion Matrices for all Runs 
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B. The Code Base 

The Main Code 

import torch 

from torch import nn 

from torch import optim 

from torch.utils.data import TensorDataset 

from torch.utils.data import DataLoader 

from matplotlib import pyplot as plt 

import numpy as np 

import sys 

import argparse 

import time 

import progress.bar as pb 

from pathlib import Path 

from helper import * 

import math 

from prettytable import PrettyTable 

#import torch_optimizer as Toptimizers 

import configparser 

 

 

"""" 
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""" 

 

startStart = time.time() 

# input flags definieren, help sollte alles erklären 

parser = argparse.ArgumentParser() 

parser.add_argument("-i", "--infile", help="define name of settings file", type = str) 

parser.add_argument("-o", "--outfile", help="define name of output files", type = str) 

parser.add_argument("-b", "--batchSize", help="sets the batchsize", type = int) 

parser.add_argument("-l", "--learnRate", help="sets the learn rate", type = float) 

parser.add_argument("-m", "--momentum", help="sets the momentum", type = float) 

parser.add_argument("-e", "--epochs", help="sets the number of epochs", type = int) 

parser.add_argument("-k", "--kFold", help="sets the of k-folds", type = int) 

parser.add_argument("-w", "--weightDecay", help="sets the weight decay for optimizer", type = 

float) 

 

parser.add_argument("--scheduler", help="define the scheduler used", type=str) 

parser.add_argument("-g", "--gamma", help="factor by which learnRate is reduced", type = 

float) 

parser.add_argument("-s", "--stepSize", help="step size with which to reduce learnRate", type 

= float) 
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parser.add_argument("--milestones", help="sets the milestones at which learn rate should 

change", nargs='*', type = int) 

parser.add_argument("--learnMax", help="the maximum learnRate for lambda scheduler", type = 

float) 

parser.add_argument("--learnMin", help="the minimum learnRate for lambda scheduler", type = 

float) 

parser.add_argument("--learnPeak", help="the epoch of learnRate peak for lambda scheduler", 

type = int) 

 

parser.add_argument("--nesterov", help="switches SGD to the Nesterov variant", 

action='store_true') 

parser.add_argument("--rho", help="coefficient for running average of squared gradients", type 

= float) 

parser.add_argument("--eps", help="numerical stability constant for optimizer", type = float) 

parser.add_argument("--alpha", help="smoothing constant for RMSprop", type = float) 

parser.add_argument("--learnRateDecay", help="determines the falloff for adagrad learnrate", 

type = float) 

parser.add_argument("--beta", help="runnung average gradient coefficients for adam", 

nargs='*', type = float) 

 

parser.add_argument("--datapath", help="sets where the data to be analyzed are stored", type = 

str) 

parser.add_argument("--nosinglepixels", help="exclude single pixel events", 

action='store_true') 

 

parser.add_argument("-sf", "--setFactor", help="sets a factor for the total amount of data per 

set", type = float) 

parser.add_argument("--balanced", help="should all data sets be about the same size?", 

action='store_false') 

parser.add_argument("-d", "--device", help="sets the processing device {cpu, cuda}", type = 

str) 

parser.add_argument("-t", "--threads", help="sets the number of processes", type = int) 

parser.add_argument("-c", "--categories", help="specify the train/valid categories {dd, pi, 

pp, sp, bp, bg, test}", type = str) 

parser.add_argument("--retrain", help="force to retrain the net", action='store_true') 

parser.add_argument("--save", help="save output data", action='store_true') 

parser.add_argument("--optim", help="define the optimizer used", type=str) 

parser.add_argument("-ll", "--linLayer", nargs='*', type = int) 

parser.add_argument("-do", "--dropout", nargs='*', type = int) 

parser.add_argument("-ch", "--channels", nargs='*', type = int) 

parser.add_argument("-ks", "--kernelSize", nargs='*', type = int) 

parser.add_argument("-pd", "--padding", nargs='*', type = int) 

parser.add_argument("-al", "--actilin", nargs='*', type = str) 

parser.add_argument("-ac", "--acticonv", nargs='*', type = str) 

args = parser.parse_args() 

 

 

# input file file lesen 

# input files bestehen aus zwei sections: [SETTINGS] & [NETWORK] 

# in diesen sections sind dann unter den schlüsselwörtern die entsprechenden einstellungen zu 

hinterlegen 

config = configparser.ConfigParser() 

if Path("{}".format(args.infile)).is_file(): 

    config.read(args.infile) 

    print("reading input file {}".format(args.infile)) 

else: 

    print("couldn't find the specified file {}".format(args.infile)) 

    config['SETTINGS'] = {} # um einen keyerror zuverhindern erstelle ich ein leeres dict 

    config['NETWORK'] = {} 

 

 

# parsen der input flags, defaults definieren ... 

# ein paar informationen printen 

settings = settingsClass() 

network = networkClass() 

print("programm start...") 

print("the following settings will be used:") 

for key in settings.list(): 

    try: 

        inputValue = getattr(args, key) # input flag wert lesen 

    except AttributeError: 

        continue 

    value = settings.getValue(key) # default wert laden 

    if inputValue != None and inputValue != value: 

        settings.setValue(key, inputValue) # input wert setzen 

        print("\tset", key, "to", inputValue, "from input flags") 
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    elif key in config['SETTINGS']: 

        readValue = config['SETTINGS'][key] # wert der input file lesen 

        readType = getType(readValue) # daten typ bestimmen 

        if readType == int: 

            settings.setValue(key, int(readValue)) 

        elif readType == float: 

            settings.setValue(key, float(readValue)) 

        elif readType == bool: 

            readBool = config['SETTINGS'].getboolean(key) 

            settings.setValue(key, readBool) 

        else: 

            settings.setValue(key, readValue) 

        print("\tset", key, "to", readValue, "from input file: {}".format(args.infile)) 

    else: 

        print("\tlet", key, "at", value, "from default settings") 

 

# hier wird die save flag gesetzt, sobald ein output name angegeben wird 

if settings.outfile != "default name": 

    settings.save = True 
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""" 

 

# kategorien parsen, namen, kürzel in string arrays schreiben 

# background ist antideuterons, pions und protons gestapelt 

settings.catNames() 

numbers = {} # hier werden alle numerischen parameter gespeichert 

numbers["numCategories"] = len(settings.categoryNames) 

outputs = outputsClass(numbers["numCategories"], settings.device) # outputs einrichten 

 

start = time.time() 

# dateien/datensätze importieren 

# es gibt zwei datensätze: 

# - der normale pixel daten satz 

# - und ein evaluierungs datensatz, zum testen des netzes 

imported = importer(settings.categoryNames, numbers, settings.datapath, 

settings.nosinglepixels) 

train, valid = importToTensor(imported, settings.categoryNames, settings.balanced, 

settings.setFactor, settings.kFold, settings.batchSize, numbers) 

 

end = time.time() 

print("\nfinished importing, it took {0:.1f} seconds\n".format(end-start)) 

 

# numbers dict enthält sämtliche parameter des datensatzes, für das netz und zeiten ... 

numbers["importTime"] = end-start 

 

 

# tabelle ertellen, wie viele daten enthalten sind und für was verwendet werden 

tableMetrics = PrettyTable() 

tableMetrics.field_names = ["Data Set", "Total", "Training", "Validation"] 

for name in settings.categoryNames: 

    tableMetrics.add_row([name, 

numbers["{}train".format(name)]+numbers["{}valid".format(name)], 

numbers["{}train".format(name)], numbers["{}valid".format(name)]]) 

tableMetrics.add_row(["Total", numbers["total"], numbers["alltrain"], numbers["allvalid"]]) 

print(tableMetrics) 
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""" 

 

start = time.time() 

print("\nsetting up neural net...") 

 

# print der netzwerk parameter 

# parsen der infile und input flags 

for key in network.list(): 

    inputValue = getattr(args, key) 

    value = network.getValue(key) 

    if inputValue != None and inputValue != value: 

        network.setValue(key, inputValue) 

        print("\tread", key, "to", inputValue, "from flags") 

    elif key in config['NETWORK']: 

        readValue = config['NETWORK'][key].split(',') # parsen der infile 

        # daten type entsprechend anpassen 

        if key == "dropout": 

            printList = list(map(float, readValue)) 

            network.setValue(key, printList) 

        elif key == "actilin" or key == 'acticonv': 

            newList = [] 

            printList = readValue 

            for word in printList: 

              newList.append(word.strip()) 

            network.setValue(key, newList) 

        else: 

            printList = list(map(int, readValue)) 

            network.setValue(key, printList) 

        print("\tread", key, "to", printList, "from {}".format(args.infile)) 

    else: 

        print("\tleft", key, "at", value, "from defaults") 

 

network.test(numbers["numCategories"]) # netzwerk paramter anpassen, sodass sie zusammen 

passen. 

print("the network will have the following parameters:") 

for key in network.list(): 

    print("\t", key, network.getValue(key)) 

 

net = pixelNet(linLayers=network.linLayer, dropout=network.dropout, actilin=network.actilin, 

channels=network.channels, kernels=network.kernelSize, pads=network.padding, 

acticonv=network.acticonv) 

 

# verlustfunktion und optimizer definieren 

# scheduler passt die lernrate über die epochen an 

lossFunc = nn.CrossEntropyLoss() 

print("using CrossEntropyLoss as loss function") 

 

if settings.optim == 'AdaHessian': 

  optimizer = Toptimizers.AdaHessian(net.parameters(), lr=settings.learnRate, 

weight_decay=settings.weightDecay, eps=settings.eps, betas=(settings.beta[0], 

settings.beta[1]), hessian_power=1.0) 
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  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

elif settings.optim == 'SGD' or settings.optim == 'sgd': 

  optimizer = optim.SGD(net.parameters(), lr=settings.learnRate, momentum=settings.momentum, 

weight_decay=settings.weightDecay, dampening=settings.dampening, nesterov=settings.nesterov) 

  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

elif settings.optim == 'Adagrad' or settings.optim == 'adagrad': 

  optimizer = optim.Adagrad(net.parameters(), lr=settings.learnRate, 

lr_decay=settings.learnRateDecay, weight_decay=settings.weightDecay, eps=settings.eps) 

  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

elif settings.optim == 'Adadelta' or settings.optim == 'adadelta': 

  optimizer = optim.Adadelta(net.parameters(), lr=settings.learnRate, 

weight_decay=settings.weightDecay, eps=settings.eps, rho=settings.rho) 

  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

elif settings.optim == 'RMSprop' or settings.optim == 'rmsprop': 

  optimizer = optim.RMSprop(net.parameters(), lr=settings.learnRate, 

weight_decay=settings.weightDecay, eps=settings.eps, momentum=settings.momentum, 

alpha=settings.alpha) 

  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

elif settings.optim == 'Adam' or settings.optim == 'adam': 

  optimizer = optim.Adam(net.parameters(), lr=settings.learnRate, 

weight_decay=settings.weightDecay, eps=settings.eps, betas=(settings.beta[0], 

settings.beta[1])) 

  print("set optimizer to {}".format(optimizer.__class__.__name__)) 

  correctOptim = True 

else: 

  optimizer = optim.SGD(net.parameters(), lr=settings.learnRate, momentum=settings.momentum, 

weight_decay=settings.weightDecay, dampening=settings.dampening, nesterov=settings.nesterov) 

  print("could not understand input, so set optimizer to SGD") 

  correctOptim = False 

   

if settings.scheduler == 'step': 

  scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=settings.stepSize, 

gamma=settings.gamma) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

elif settings.scheduler == 'multistep': 

  scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=settings.milestones, 

gamma=settings.gamma) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

elif settings.scheduler == 'exponential': 

  scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=settings.gamma) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

elif settings.scheduler == 'reduce': 

  scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

elif settings.scheduler == 'cycle': 

  scheduler = optim.lr_scheduler.OneCycleLR(optimizer, settings.learnMax, 

total_steps=settings.epochs, pct_start=settings.learnPeak/settings.epochs, 

div_factor=settings.learnMax/settings.learnRate, 

final_div_factor=settings.learnRate/settings.learnMin) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

elif settings.scheduler == 'cycles': 

  if optimizer.__class__.__name__ == 'Adam' or optimizer.__class__.__name__ == 'Adahessian': 

    scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=settings.learnRate, 

max_lr=settings.learnMax, step_size_up=int(settings.epochs/settings.cycles), 

gamma=settings.gamma, cycle_momentum=False) 

  else: 

    scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=settings.learnRate, 

max_lr=settings.learnMax, step_size_up=int(settings.epochs/settings.cycles), 

gamma=settings.gamma, cycle_momentum=True) 

  print("set scheduler to {}".format(scheduler.__class__.__name__)) 

else: 

  scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=settings.stepSize, 

gamma=settings.gamma) 

  print("could not understand input, so set scheduler to StepLR") 

 

# netz auf die gpu kopieren, falls eine cuda karte vorhanden ist 

if settings.device == "cuda": 

    startGPU = time.time() 

    print("\ncopying net to gpu...") 

    net.to(settings.device) 

    endGPU = time.time() 
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    numbers["gpuTime"] = endGPU-startGPU 

numbers["setupTime"] = time.time()-start 

torch.set_num_threads(settings.threads) 

 

""" 
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# den namen erstellen unter welchem das model gespeichert wird 

settings.modelName = network.saveName() 

 

# den namen erstellen unter welchem outputs gespeichert werden 

if settings.outfile == "default name": 

    settings.outfile = settings.saveName() 

    if settings.device == "cuda": 

        settings.outfile += "_cuda" 

 

 

""" 

88888888888              d8b          d8b                    

    888                  Y8P          Y8P                    

    888                                                      

    888  888d888 8888b.  888 88888b.  888 88888b.   .d88b.   

    888  888P"      "88b 888 888 "88b 888 888 "88b d88P"88b  

    888  888    .d888888 888 888  888 888 888  888 888  888  

    888  888    888  888 888 888  888 888 888  888 Y88b 888  

    888  888    "Y888888 888 888  888 888 888  888  "Y88888  

                                                        888  

                                                   Y8b d88P  

                                                    "Y88P"   

""" 

 

# hier wird geprüft ob es bereits ein model für das netzwerk gibt, falls ja, wird es geladen 

if settings.retrain == False: 

    print("\nlooking for model...") 

    if Path("modelstate/{}--{}.pth".format(settings.modelName, 

settings.categories)).is_file(): 

        trainNet = False 

        start = time.time() 

        print("loading model...") 

        net.load_state_dict(torch.load("modelstate/{}--{}.pth".format(settings.modelName, 

settings.categories))) 

        net.to(settings.device) 

        net.eval() 

        numbers["loadTime"] = time.time()-start 

    else: 

        trainNet = True 

        print("no model found") 

else: 

    trainNet = True 

    print("\nno model loaded") 

 

# das netzwerk wird trainiert, falls ein statedict vorhanden ist oder falls "--retrain" 

geschrieben wurden 

if trainNet == True: 

    fit(net, lossFunc, optimizer, scheduler, train, valid, settings.epochs, 

settings.batchSize, numbers, settings.device) 

    #plotTerminal(settings.epochs, numbers["losses"], numbers["confidence"], 

numbers["accuracy"], numbers["validation"]) 

    # speichern des statedicts, mit namen des models, des verwendeten datensatzes 
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    torch.save(net.state_dict(), "modelstate/{}--{}.pth".format(settings.modelName, 

settings.categories)) 

 

 

""" 
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""" 

 

print("\nbeginn validation...") 

net.eval() # netz in evaliierungs modus setzen 

length = numbers["allvalid"]/(2*settings.batchSize) 

bar = pb.PixelBar("validation:", max=length+1) # progressbar wird definiert 

valstart = time.time() 

with torch.no_grad(): 

    for inputs, labels in valid: 

        if settings.device == "cuda": 

            startGPU = time.time() 

            inputs = inputs.to(settings.device) 

            labels = labels.to(settings.device) 

            endGPU = time.time() 

            numbers["gpuTime"] += endGPU-startGPU 

        guesses = net(inputs) 

        outputs.allGuesses = torch.vstack((outputs.allGuesses, guesses)) 

        _, preds = torch.max(guesses, 1) # wie der name sagt passiert hier die vorhersage 

        outputs.total += labels.shape[0] # zählen wie viel insgesamt geraten wurde 

        outputs.correct += (preds == labels).sum().item() # sämtliche korrekte vorhersagen 

summieren 

        c = (preds == labels).squeeze() 

        # hier erstelle ich die confusion matrix 

        for i in range(numbers["numCategories"]): 

            outputs.confMatrix[labels,i] += (preds == i).sum().item() 

            label = labels[i] 

            outputs.classCorrect[label] += c[i].item() 

            outputs.classTotal[label] += 1 

        bar.next() 

outputs.adjustGuesses(numbers["numCategories"]) 

bar.finish() 
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outputs.confMatrix = outputs.confMatrix.type(torch.LongTensor) # konvertieren des datentypes 

des confusion matrix 
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numbers["validationTime"] = time.time()-valstart 

Time = printTime(numbers["validationTime"]) 

print("validation finished, it took {}".format(Time)) 

print("") 

 

# priten der confusion matrix als tabelle 

confTabel = plotConfTerminal(outputs.confMatrix, settings.categoryNames) 

print(confTabel) 

print('\nAccuracy of the network on the {} events: {:.2f}%\n'.format(numbers["allvalid"], 

outputs.accuracy())) 

 

# true Positive, false Negative etc. 

outputs.tptnfpfn(settings.categoryNames) 

# report enthält sensitivity, specificity, precision, f1score und matthew correllation 

coeffecient 

outputs.classReport(settings.categoryNames) 

 

reportTable = plotReportTerminal(outputs.report, settings.categoryNames, outputs.scores) 

print(reportTable) 

 

print("") 

for name in settings.categoryNames: 

    print("category: ",name) 

    print("\t- TP: ",outputs.TP[name].item()) 

    print("\t- TN: ",outputs.TN[name].item()) 

    print("\t- FP: ",outputs.FP[name].item()) 

    print("\t- FN: ",outputs.FN[name].item()) 

    for score in outputs.scores: 

        print("\t- {0}: {1:.2f}".format(score, outputs.report[score][name])) 

print("total accuracy: 

{0:.2f}".format(outputs.confMatrix.diagonal().sum().item()/outputs.confMatrix.sum().item())) 

 

endEnd = time.time() 

if 'slowpions' in settings.categoryNames: 

  everyCount = outputs.confMatrix.sum() - outputs.confMatrix[-1,-1] 

  print('got {0:.2f}% of the slow pions\n'.format(100 * outputs.confMatrix[0,0]/everyCount)) 

   

  if settings.save == True: 

    # resultat datei erstellen 

    results = open('results', 'a') 

    results.write('{}\t'.format(settings.outfile)) 

    results.write('{}\t'.format(outputs.accuracy()/100)) 

    results.write('{}\t'.format(outputs.confMatrix[0,0]/everyCount)) 

    results.write('{}\t'.format(outputs.report['precision']['slowpions'])) 

    results.write('{}\t'.format(outputs.report['matthew']['slowpions'])) 

    results.write('{}\n'.format(endEnd-startStart)) 

    results.close() 

 

numbers["runTime"] = endEnd-startStart 

print("the whole run took {}".format(printTime(numbers["runTime"]))) 

if settings.device == "cuda": 

    print("copying to GPU took {}".format(printTime(numbers["gpuTime"]))) 

print("") 
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""" 

 

# einfache methode und die outputs nicht zu speichern 

# das programm wird einfach abgebrochen 

if settings.save == False: 

    sys.exit() 

print("saved all outputs under {}".format(settings.outfile)) 

 

# barchats, die ausgeben wie viele daten für training und validierung verwendet werden 
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plotbars(settings.categoryNames, numbers, settings.outfile) 

 

# trainings kurven zu verlust und genauigkeit 

if trainNet == True: 

  plotLoss(["losses", "validation", "confidence", "accuracy"], settings.epochs, numbers, 

settings.outfile) 

  #plotLRLoss(numbers['learnRates'], numbers['losses'], numbers['validation'], 

settings.outfile) 

 

# verschiedene auswertungs plots 

plotConfMatrix(outputs.confMatrix, settings.categoryNames, settings.outfile) 

plotClassErrors(outputs.confMatrix, settings.categoryNames, numbers, settings.outfile) 

plotClasses(outputs.report, settings.categoryNames, outputs.scores, settings.outfile) 

plotGuesses(outputs.allGuesses, settings.categoryNames, settings.outfile) 

 

# output log file schreiben, die ich für spätere auswertung verwenden möchte 

file = open("outputs/{}.log".format(settings.outfile), "w") 

file.write("------ Settings ------") 

file.write("\nthis runs settings were:") 

for key in settings.list(): 

    file.write("\n\t{}: {}".format(key, settings.getValue(key))) 

 

file.write("\n\n------ Network ------") 

file.write("\nthis run used: {}".format(net.__class__.__name__)) 

if correctOptim == True: 

    file.write("\noptimizer was: {}".format(settings.optim)) 

else: 

    file.write("\noptimizer was: {}".format(SGD)) 

file.write("\nlearn rate scheduler was: {}".format(settings.scheduler)) 

file.write("\nit ran on {}".format(settings.device)) 

 

file.write("\nthe networks parameters were:") 

for key in network.list(): 

    file.write("\n\t{}: {}".format(key, network.getValue(key))) 

if trainNet == True: 

    file.write("\n\nthe network was trained from scratch") 

else: 

    file.write("\n\nit was a validation run") 

 

file.write("\n\n------ Dataset ------") 

file.write("\nthere are {} categories, namely:".format(numbers["numCategories"])) 

for name in settings.categoryNames: 

    file.write("\n- {} with {} data points".format(name, 

numbers["{}train".format(name)]+numbers["{}valid".format(name)])) 

    file.write("\n\t- {} points for training".format(numbers["{}train".format(name)])) 

    file.write("\n\t- {} points for validation".format(numbers["{}valid".format(name)])) 

file.write("\n\ntotal number for training:\t{}".format(numbers["alltrain"])) 

file.write("\ntotal number for validation:\t{}".format(numbers["allvalid"])) 

file.write("\n\n") 

file.write(str(tableMetrics)) 

 

if trainNet == True: 

    file.write("\n\n------ Training ------") 

    file.write("\nhere follow traning statistics") 

    for epoch in range(settings.epochs): 

        file.write("\nepoch {}/{}:".format(epoch+1, settings.epochs)) 

        file.write("\n\tlearnRate: {}".format(numbers["learnRates"][epoch])) 

        file.write("\n\tlosses: {}".format(numbers["losses"][epoch])) 

        file.write("\n\tvalidation: {}".format(numbers["validation"][epoch])) 

        file.write("\n\taccuracy: {}".format(numbers["accuracy"][epoch])) 

        file.write("\n\tconfidence: {}".format(numbers["confidence"][epoch])) 

 

file.write("\n\n------ Time ------") 

file.write("\nloading data took \t \t {0:.2f}".format(numbers["importTime"])) 

file.write("\nsetting up the network took \t {0:.2f}".format(numbers["setupTime"])) 

if trainNet == True: 

    file.write("\ntraining took \t \t \t {0:.2f}".format(numbers["trainingTime"])) 

else: 

    file.write("\nloading the model took \t \t {0:.2f}".format(numbers["loadTime"])) 

file.write("\nvalidation took \t \t {0:.2f}".format(numbers["validationTime"])) 

file.write("\nthe whole run took \t \t {0:.2f}".format(numbers["runTime"])) 

if settings.device == "cuda": 

    file.write("\ncopying to GPU took \t {0:.2f}".format(numbers["gpuTime"])) 

 

file.write("\n\n------ Statistics ------") 
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file.write('\nAccuracy of the network on the {} events: 

{:.2f}%'.format(numbers["allvalid"],outputs.accuracy())) 

for i in range(numbers["numCategories"]): 

    file.write('\n\nfor {}:'.format(settings.categoryNames[i])) 

    file.write('\n- correct guesses: \t {}'.format(int(outputs.classCorrect[i]))) 

    file.write('\n- Accuracy: \t \t {:.2f}%'.format(100 * outputs.classCorrect[i] / 

outputs.classTotal[i])) 

if 'slowpions' in settings.categoryNames: 

  file.write('\ngot {0:.2f}% of the slow pions\n'.format(100 * outputs.confMatrix[-1,-

1]/everyCount)) 

file.write("\n\n") 

file.write(reportTable) 

 

file.write("\n\n------ Confusion Matrix ------\n") 

file.write(confTabel) 

 

file.write("\n\n------ True, False, Positive, Negative ------") 

for name in settings.categoryNames: 

    file.write("\ncategory: {}".format(name)) 

    file.write("\n\t- TP: {}".format(outputs.TP[name].item())) 

    file.write("\n\t- TN: {}".format(outputs.TN[name].item())) 

    file.write("\n\t- FP: {}".format(outputs.FP[name].item())) 

    file.write("\n\t- FN: {}".format(outputs.FN[name].item())) 

    for score in outputs.scores: 

        file.write("\n\t- {0}: {1:.2f}".format(score ,outputs.report[score][name])) 

file.write("\ntotal accuracy: 

{0:.2f}\n".format(outputs.confMatrix.diagonal().sum().item()/outputs.confMatrix.sum().item())) 

 

if Path("{}".format(args.infile)).is_file(): 

  file.write('\n\n------ Input file ------\n') 

  file.write('{}\n'.format(args.infile)) 

file.close() 

 

And the helper code 

import torch 

import numpy as np 

from matplotlib import pyplot as plt 

from torch.utils.data import TensorDataset 

from torch.utils.data import DataLoader 

from torch import nn 

import torch.nn.functional as F 

from torch import optim 

import time 

import progress.bar as pb 

import math 

from ast import literal_eval 

from pathlib import Path 

from prettytable import PrettyTable 

 

""" 
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""" 

 

# diese funktion dient den daten typ des inputs zu überprüfen 

def getType(input): 

    try: 

        return type(literal_eval(input)) 

    except (ValueError, SyntaxError): 

        return str 

 

# passt die inputs der ersten linearen layers an die umstände an 

def firstLinSize(channels, kernels, pads): 

    size = 9 

    for kern, pad, chan in zip(kernels, pads, channels): 

        if kern > 0: 
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            size = (size-(kern-1)+2*pad) 

        else: 

            kern = -kern 

            size = (size+(kern-1)+2*pad) 

    if len(channels) > 0: 

        return size**2*channels[-1] 

    else: 

        return size**2 

 

# netzwerk parameter vergleicheun und anpassen 

def layerSize(master, slave, defaultFill): 

    # auffüllen mit einem füllwert 

    if len(master)-1 > len(slave): 

        if len(slave) > 0: 

            fillValue = slave[-1] 

        else: 

            fillValue = defaultFill 

        while len(master)-1 > len(slave): 

            slave.append(fillValue) 

        print("filled {} to fit to {} with {}".format('slaveName', 'masterName', fillValue)) 

        return slave 

    # falls es zu lang ist, wird es einfach abgeschnitten 

    elif len(slave) > len(master)-1: 

        lengthDiff = len(slave)-(len(master)-1) 

        print("truncated {} to fit to {}".format('slave', 'master')) 

        return slave[:lengthDiff+1] 

    else: 

        return slave 

 

# paddings and kernelSizes anpassen 

def kernPadSize(kernels, padding): 

    if len(kernels) > len(padding): 

        while len(kernels) > len(padding): 

            index = len(padding) 

            kernSize = kernels[index] 

            if kernSize > 0: 

                padValue = int((kernSize-1)/2) 

            else: 

                padValue = 0 

            padding.append(padValue) 

        print("filled padding to fit to kernelSize") 

    # kürzen von padding, falls es zu lang ist 

    elif len(padding) > len(kernels): 

        lengthDiff = len(padding)-len(kernels) 

        padding = padding[:lengthDiff+2] 

        print("truncated padding to fit to kernelSize") 

    return padding 

 

# importier funktion 

def importer(names, numbers, path, singlePixels): 

    imported = {} 

    numbers['allImported'] = [] 

    suffix = '' 

    if singlePixels == True: 

        suffix = '-nosinglepixels' 

    print("\nimporting data ", end='') 

    for name in names: 

        if Path("{}/{}.pt".format(path, name+suffix)).is_file(): 

            imported[name] = torch.load("{}/{}.pt".format(path, name+suffix)) 

        print(".", end='') 

         

    for name in names: 

        numbers['allImported'].append(len(imported[name])) 

         

    return imported 

         

 

def importToTensor(imported, names, balanced, setFactor, kFold, batchSize, numbers): 

    train = {} 

    valid = {} 

    if balanced == True: 

        upperBound = int(min(numbers['allImported'])*setFactor) 

        lowerBound = int(0.92*upperBound) 

    # hier kürze ich den datensatz, einfach nur um das training zu beschleunigen 

    # außerdem balanziere ich die kategorien auf eine ungefähr gleiche länge 

    for i, name in enumerate(names): 
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        if balanced == False: 

            upperBound = int(numbers['allImported'][i]*setFactor) 

            lowerBound = int(0.92*upperBound) 

        index = torch.randperm(len(imported[name])) 

        length = torch.LongTensor(1).random_(lowerBound, upperBound).item() 

        index = index[:length] 

        imported[name] = imported[name][index] 

        # den vollen datensatz in trainings-/validierungsdatensat trennen, nach kfold faktoren 

        indices = torch.randperm(len(imported[name])) 

        split = int(len(imported[name])/kFold) 

        train[name], valid[name] = imported[name][split:], imported[name][:split] 

 

    # tensoren für datensätze erstellen 

    trainTensor = torch.vstack([train[name].float() for name in names]) 

    validTensor = torch.vstack([valid[name].float() for name in names]) 

    # labels für den jeweiligen datensatz erstellen 

    trainLabel = torch.vstack([torch.full((len(train[name]),1),i) for i,name in 

enumerate(names)]).flatten() 

    validLabel = torch.vstack([torch.full((len(valid[name]),1),i) for i,name in 

enumerate(names)]).flatten() 

     

    for name in names: 

        numbers["{}total".format(name)] = len(train[name])+len(valid[name]) 

        numbers["{}train".format(name)] = len(train[name]) 

        numbers["{}valid".format(name)] = len(valid[name]) 

     

    numbers["alltrain"] = len(trainTensor) 

    numbers["allvalid"] = len(validTensor) 

    numbers["total"] = len(trainTensor)+len(validTensor) 

     

    # datensätze mit labels zusammenbringen, trainings datensatz mischen 

    train = DataLoader(TensorDataset(trainTensor, trainLabel), batch_size=batchSize, 

shuffle=True) 

    valid = DataLoader(TensorDataset(validTensor, validLabel), batch_size=batchSize*2) 

     

    return train, valid 

     

# rechnet zeiten in stunden, minuten um und printet es übersichtlicher 

def printTime(time): 

    hours = math.floor(time/(60*60)) 

    if hours >= 1: 

        time = time % (60*60) 

    minutes = math.floor(time/60) 

    seconds = time % 60 

    if hours >= 1 and minutes > 0: 

        return "{} hours, {} minutes & {:.1f} seconds".format(hours,minutes,seconds) 

    elif hours >= 1 and minutes == 0: 

        return "{} hours, {:.1f} seconds".format(hours,seconds) 

    elif minutes >= 1: 

        return "{} minutes, {:.1f} seconds".format(minutes,seconds) 

    else: 

        return "{:.1f} seconds".format(seconds) 

 

# Fuktion zum erstellen des Model Names 

def addStrings(seperator, numbers): 

    modelSaveName = "" 

    for i, number in enumerate(numbers): 

        if i == 0: 

            modelSaveName += seperator 

        else: 

            modelSaveName += '+' 

        modelSaveName += str(number) 

    return str(modelSaveName) 

 

# wie der name schon sagt 

def accuracyFunc(outputs, labels): 

    preds = torch.argmax(outputs, dim=1) 

    return (preds == labels).float().mean() 

 

# nimmt nimmt durchschnitt der erratenen werte für batchsize 

def confidenceFunc(outputs): 

    m = nn.Softmax(dim=1) 

    outputs = m(outputs) 

    return outputs.max(1)[0].mean().item() 

 

# die fit funktion, nimmt das model/netzwerk, die verlust- und optimierungsfunktion entgegen 
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# in numbers speichere ich alle zahlen wie epochs, batchsize, zeiten etc. 

# device ist selbst erklärend, cpu oder cuda:0 

def fit(model, lossFunc, opt, scheduler, train, valid, epochs, batchSize, numbers, device): 

    startTrain = time.time() 

    losses = torch.tensor([], device=device) 

    validation = torch.tensor([], device=device) 

    confidence = torch.tensor([], device=device) 

    accuracy = torch.tensor([], device=device) 

    learnRates = [] 

 

    print("\nbeginn training...") 

    timeEpoch = torch.tensor([]) 

    for epoch in range(epochs): 

        startEpoch = time.time() 

        length = numbers["alltrain"]/batchSize+numbers["allvalid"]/(2*batchSize) 

        bar = pb.PixelBar("epoch {}/{}:".format(epoch+1, epochs), max=length+1) # das ist die 

progressbar pro lern epoche 

 

        # lern metrik pro epoche, die werte pro batch werden hier gespeichert und später 

gemittelt 

        lossepoch = torch.tensor([], device=device) 

        vallossepoch = torch.tensor([], device=device) 

        confepoch = torch.tensor([], device=device) 

        accuepoch = torch.tensor([], device=device) 

 

        model.train() # model/netzwerk in trainings modus setzen 

        for inputs, labels in train: 

            # daten auf graphikkarte kopieren 

            if device == "cuda": 

                startGPU = time.time() 

                inputs = inputs.to(device) 

                labels = labels.to(device) 

                endGPU = time.time() 

                numbers["gpuTime"] += endGPU-startGPU 

            opt.zero_grad() # optimizer gradienten leeren 

            guesses = model(inputs) # predictions machen 

 

            # hier werden lehrnmetriken berechnet 

            confi = confidenceFunc(guesses) 

            confepoch = torch.cat((confepoch, torch.tensor([confi], device=device))) 

            loss = lossFunc(guesses, labels) 

            lossepoch = torch.cat((lossepoch, torch.tensor([loss.item()], device=device))) 

            accu = accuracyFunc(guesses, labels) 

            accuepoch = torch.cat((accuepoch, torch.tensor([accu.item()], device=device))) 

             

            if opt.__class__.__name__ == 'Adahessian': 

                loss.backward(create_graph=True) # verlust zurück propagieren 

            else: 

                loss.backward() # verlust zurück propagieren 

            opt.step() 

            bar.next() 

 

        model.eval() 

        with torch.no_grad(): 

            for inputs, labels in valid: 

                if device == "cuda": 

                    startGPU = time.time() 

                    inputs = inputs.to(device) 

                    labels = labels.to(device) 

                    endGPU = time.time() 

                    numbers["gpuTime"] += endGPU-startGPU 

                guesses = model(inputs) 

                valloss = lossFunc(guesses, labels) 

                vallossepoch = torch.cat((vallossepoch, torch.tensor([valloss.item()], 

device=device))) 

                bar.next() 

 

        # metriken ... 

        losses = torch.cat((losses, torch.tensor([lossepoch.mean().item()], device=device))) 

        validation = torch.cat((validation, torch.tensor([vallossepoch.mean().item()], 

device=device))) 

        confidence = torch.cat((confidence, torch.tensor([confepoch.mean().item()], 

device=device))) 

        accuracy = torch.cat((accuracy, torch.tensor([accuepoch.mean().item()], 

device=device))) 

        timeEpoch = torch.cat((timeEpoch, torch.tensor([time.time()-startEpoch]))) 
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        bar.finish() 

        Time = printTime(time.time()-startEpoch) 

        learnRRate = opt.state_dict()['param_groups'][0]['lr'] 

        learnRates.append(learnRRate) 

        print("learnRate: {:.6f}, time: {}".format(learnRRate, Time)) 

        print("loss: {:.3f}, confidence: {:.3f}, accuracy: {:.3f}, validation: 

{:.3f}".format(lossepoch.mean().item(), confepoch.mean().item(), accuepoch.mean().item(), 

vallossepoch.mean().item())) 

        if scheduler.__class__.__name__ == 'ReduceLROnPlateau': 

            scheduler.step(valloss) 

        else: 

            scheduler.step() 

 

    numbers["trainingTime"] = time.time()-startTrain 

    Time = printTime(numbers["trainingTime"]) 

    print("\nfinished training, it took {}".format(Time)) 

    print("it took {} on average per epoch".format(printTime(timeEpoch.mean()))) 

    numbers["epochTime"] = timeEpoch.mean() 

    numbers["losses"] = losses 

    numbers["validation"] = validation 

    numbers["confidence"] = confidence 

    numbers["accuracy"] = accuracy 

    numbers["learnRates"] = learnRates 

 

""" 
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888    Y88b 888 "Y888888  88888P'  88888P'  "Y8888  888  888                                                                                                                                                                                        

""" 

 

# diese klasse enthält sämtliche einstellungen bzgl. des trainings 

class settingsClass(): 

    batchSize = 64 

    learnRate = 0.1 

    momentum = 0.9 

    epochs = 50 

    kFold = 4 

    weightDecay = 0. 

     

    scheduler = 'step' 

    stepSize = 1 

    gamma = 0.5 

    milestones = [int(epochs/4), int(2*epochs/4), int(3*epochs/4)] 

    learnMin = learnRate/10 

    learnMax = learnRate*5 

    learnPeak = int(epochs/4) 

    cycles = 5 

     

    nesterov = False 

    rho = 0.9 

    eps = 1e-6 

    alpha = 0.99 

    learnRateDecay = 0 

    beta = [0.9, 0.999] 

    dampening = 0 

     

    datapath = 'data' 

    nosinglepixels = False 

     

    device = "cpu" 

    threads = torch.get_num_threads() 

    categories = "bb+dd+pi+pp+sp" 

    categoryNames = [] 

    balanced = True 

    setFactor = 0.65 

    retrain = False 

    save = False 

    optim = "SGD" 

    outfile = "default name" 

    modelName = "" 
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    @staticmethod 

    def list(): 

        return [s for s in dir(settingsClass) if not 

            (s.startswith('__') or callable(getattr(settingsClass, s)))] 

 

    def getValue(self, key): 

        return getattr(self, key) 

 

    def setValue(self, key, value): 

        setattr(self, key, value) 

 

    def saveName(self): 

        return "{}_{}_{}_bs{}_kf{}_e{}_lr{}".format(self.modelName, self.optim, 

self.categories, self.batchSize, self.kFold, self.epochs, self.learnRate) 

 

    def catNames(self): 

        categorySplit = self.categories.split('+') 

        if "test" in categorySplit: 

            self.categoryNames = ['test1', 'test2', 'test3', 'test4'] 

            self.categories = "test" 

        else: 

            if "bg" in categorySplit: 

                self.categoryNames += ["background"] 

            if "dd" in categorySplit: 

                self.categoryNames += ["antideuterons"] 

            if "pi" in categorySplit: 

                self.categoryNames += ["pions"] 

            if "pp" in categorySplit: 

                self.categoryNames += ["protons"] 

            if "sp" in categorySplit: 

                self.categoryNames += ["slowpions"] 

            if "bp" in categorySplit: 

                self.categoryNames += ["boxedpions"] 

            if "bb" in categorySplit: 

                self.categoryNames += ["beambackground"] 

            if "ev" in categorySplit: 

                self.categoryNames += ["everythingelse"] 

            if "kk" in categorySplit: 

                self.categoryNames += ["kaons"] 

            if "gg" in categorySplit: 

                self.categoryNames += ["gammas"] 

            if "el" in categorySplit: 

                self.categoryNames += ["electrons"] 

            if "sl" in categorySplit: 

                self.categoryNames += ["slowelectrons"] 

            if "mm" in categorySplit: 

                self.categoryNames += ["muons"] 

            if "lb" in categorySplit: 

                self.categoryNames += ["lightBG"] 

            if "mb" in categorySplit: 

                self.categoryNames += ["mesonBG"] 

            if "hb" in categorySplit: 

                self.categoryNames += ["heavyBG"] 

            if "ab" in categorySplit: 

                self.categoryNames += ["allBG"] 

            # prefix für output files wird hier generiert 

            # ich mache das so, weil ich im prefix immer die selbe reihenfolge will 

            categorySplit.sort() 

            catNames = '' 

            for i, name in enumerate(categorySplit): 

                if i == 0: 

                    catNames += name 

                else: 

                    catNames += "+" 

                    catNames += name 

            self.categories = catNames 

     

# diese klasse enthält sämtliche einstellungen bzgl. des netzes 

class networkClass(): 

    linLayer = [81,49,21,4] 

    dropout = [0,0,0] 

    channels = [] 

    kernelSize = [] 

    padding = [] 

    actilin = ["relu", "relu", "softmax"] 

    acticonv = [] 
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    @staticmethod 

    def list(): 

        return [s for s in dir(networkClass) if not 

            (s.startswith('__') or callable(getattr(networkClass, s)))] 

 

    def getValue(self, key): 

        return getattr(self, key) 

 

    def setValue(self, key, value): 

        setattr(self, key, value) 

 

    def saveName(self): 

        name = "" 

        if len(self.kernelSize) > 0: 

            name += addStrings("conv-", self.kernelSize) 

            name += addStrings("-", self.padding) 

            name += addStrings("-", self.channels) 

            name += '--' 

        name += addStrings("lin-", self.linLayer) 

        name += addStrings("-", self.dropout) 

        return name 

 

    # testet ob die netzwerk parameter sinn ergeben 

    def test(self, outputSize): 

        print("testing network parameters, if they will fit...") 

        # output layer hinzufügen 

        if self.linLayer[-1] != outputSize: 

            if self.linLayer[-1] > outputSize: 

                self.linLayer.append(outputSize) # output layer hinzufügen 

            else: 

                self.linLayer[-1]=(outputSize) # breite des outputs anpassen 

            print("added the output layer") 

        # dropout an länge der linLayer anpassen 

        # falls dropout zu kurz ist, wird es mit dem letzten wert aufgefüllt 

        self.dropout = layerSize(self.linLayer, self.dropout, 0) 

 

        # überprüfen der channels, der erste kanal muss immer 1 sein 

        # die länge von channels muss mindestens 2 sein 

        if len(self.channels) == 1: 

            self.channels.insert(0,1) 

            print("channels was too short and added the first channel") 

        if len(self.channels) > 0: 

            if self.channels[0] != 1: 

                self.channels.insert(0,1) 

                print("added a first channel") 

        # nun passn wir kenelSize an channels an, wie wir es mit linLayer und dropout machten 

        self.kernelSize = layerSize(self.channels, self.kernelSize, 3) 

        # falls kernels angegeben sind, aber keine channels, dann werden 1er channel 

aufgefüllt 

        if len(self.channels) == 0 and len(self.kernelSize) != 0: 

            self.channels = [1] * (len(self.kernelSize)+1) 

        # anpassen von padding, sodass es mit kernelSize zusammenpasst 

        # padding wird so angepasst, dass die größe des bilds sich NICHT ändert 

        self.padding = kernPadSize(self.kernelSize, self.padding) 

 

        # auffüllen der aktivierungs listen 

        self.actilin = layerSize(self.linLayer, self.actilin, 'relu') 

        self.acticonv = layerSize(self.channels, self.acticonv, 'relu') 

        self.actilin[-1] = 'softmax' # der ausgabe layer soll keine aktivierung haben 

 

        # anpassen des ersten linLayers 

        firstLinLayer = firstLinSize(self.channels, self.kernelSize, self.padding) 

        if len(self.channels) >= 1 and self.linLayer[0] != firstLinLayer: 

            if all(element == self.linLayer[0] for element in self.linLayer[:-1]): 

                for i in range(len(self.linLayer)-1): 

                    self.linLayer[i] = firstLinLayer 

                print("adjusted the all linLayers to fit to convolutional layers") 

            else:     

                self.linLayer[0] = firstLinLayer 

                print("adjusted the first linLayer to fit to convolutional layers") 

        elif self.linLayer[0] != 81 and len(self.channels) == 0: 

            self.linLayer.insert(0,81) 

            print("added an input layer") 
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# eine klasse die sämtliche outputs und post-processing enthält 

class outputsClass(): 

    def __init__(self, numOutputs, device): 

        self.total = 0 

        self.classTotal = list(0. for i in range(numOutputs)) 

        self.correct = 0 

        self.classCorrect = list(0. for i in range(numOutputs)) 

        self.classAccuracy = list(0. for i in range(numOutputs)) 

        self.confMatrix = torch.zeros((numOutputs, numOutputs), device=device) 

        self.TP, self.TN, self.FP, self.FN = {}, {}, {}, {} 

        self.sensitivity, self.specificity, self.precision, self.f1score, self.matthew = {}, 

{}, {}, {}, {} 

        self.scores = ["sensitivity", "specificity", "precision", "f1score", "matthew"] 

        self.reports = {} 

        self.allGuesses = torch.zeros((1,numOutputs), device=device) 

 

    def accuracy(self): 

        return 100 * self.correct/self.total 

 

    # berechnet TP, TN, FP und FN aus der confusion matrix 

    def tptnfpfn(self, categoryNames): 

        numCategories = len(categoryNames) 

        for k, name in enumerate(categoryNames): 

            for i in range(numCategories): 

                for j in range(numCategories): 

                    if i == j: 

                        self.TP[name] = self.confMatrix[k,k] 

                    if i == k: 

                        self.FP[name] = self.confMatrix[:,k].sum()-self.confMatrix[k,k] 

                    if j == k: 

                        self.FN[name] = self.confMatrix[k].sum()-self.confMatrix[k,k] 

                    self.TN[name] = self.confMatrix[k].sum()+self.confMatrix[:,k].sum()-

2*self.confMatrix[k,k] 

 

    # berechnet sensitivity etc aus TP, TN, FP, FN für jede klasse 

    # reports in ein geschachteltes dictionary 

    # -> erst die scores 

    # --> dann categoryNames 

    def classReport(self, categoryNames): 

        for name in categoryNames: 

            try: 

                self.sensitivity[name] = 

self.TP[name].item()/(self.TP[name].item()+self.FN[name].item()) 

            except ZeroDivisionError: 

                self.sensitivity[name] = 0 

            try: 

                self.specificity[name] = 

self.TN[name].item()/(self.TN[name].item()+self.FP[name].item()) 

            except ZeroDivisionError: 

                self.specificity[name] = 0 

            try: 

                self.precision[name] = 

self.TP[name].item()/(self.TP[name].item()+self.FP[name].item()) 

            except ZeroDivisionError: 

                self.precision[name] = 0 

            try: 

                self.f1score[name] = 

2*(self.sensitivity[name]*self.specificity[name])/(self.sensitivity[name]+self.specificity[nam

e]) 

            except ZeroDivisionError: 

                self.f1score[name] = 0 

            try: 

                self.matthew[name] = (self.TP[name].item()*self.TN[name].item()-

self.FP[name].item()*self.FN[name].item())/math.sqrt((self.TP[name].item()+self.FP[name].item(

))*(self.TP[name].item()+self.FN[name].item())*(self.TN[name].item()+self.FP[name].item())*(se

lf.TN[name].item()+self.FN[name].item())) 

            except ZeroDivisionError: 

                self.matthew[name] = 0 

        self.report = {"sensitivity": self.sensitivity, "specificity": self.specificity, 

"precision": self.precision, "f1score": self.f1score, "matthew": self.matthew} 

     

    def adjustGuesses(self, numOutputs): 

        self.allGuesses = self.allGuesses[1:] 

        self.allGuesses = torch.round(20*self.allGuesses)/20 
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""" 

 

# eine funktion um flexibel die aktivierung zu wählen 

def activator(activate): 

    activation = nn.ModuleDict([ 

                ['lrelu', nn.LeakyReLU()], 

                ['elu', nn.ELU()], 

                ['relu', nn.ReLU()], 

                ['rrelu', nn.RReLU()], 

                ['sigi', nn.Sigmoid()], 

                ['tanh', nn.Tanh()], 

                ['id', nn.Identity()], 

                ['softplus', nn.Softplus()], 

                ['softmax', nn.Softmax(dim = 1)] 

        ]) 

    return activation[activate] 

 

 

# hier definiere ich convolutional layer 

# eine Funktion zum erstellen von conv layern 

def createConv(inChannels, outChannels, pad, activate, *args, **kwargs): 

    print("created convolutional layer with {} inChannels, {} outChannels and activation 

{}".format(inChannels, outChannels, activate)) 

    return nn.Sequential( 

        nn.Conv2d(inChannels, outChannels, *args, **kwargs), 

        nn.BatchNorm2d(outChannels), 

        nn.ReplicationPad2d(pad), 

        activator(activate) 

    ) 

 

# erstelle conv-transposed layer 

def createConvTranspose(inChannels, outChannels, pad, activate, *args, **kwargs): 

    print("created convolutional transposed layer with {} inChannels, {} outChannels and 

activation {}".format(inChannels, outChannels, activate)) 

    return nn.Sequential( 

        nn.ConvTranspose2d(inChannels, outChannels, *args, **kwargs), 

        nn.BatchNorm2d(outChannels), 

        nn.ReplicationPad2d(pad), 

        activator(activate) 

    ) 

 

 

# Schrittweise Erstellung der conv layer 

class myConv(nn.Module): 

    def __init__(self, channels, kernels, pads, activate): 

        super().__init__() 

        layerBlock = [] 

        for kern, pad, inSize, outSize, acti in zip(kernels, pads, channels, channels[1:], 

activate): 

            if kern > 0: 

                layerBlock.append(createConv(inSize, outSize, activate=acti, kernel_size=kern, 

pad=pad)) 

            else: 

                kern = -kern 

                layerBlock.append(createConvTranspose(inSize, outSize, activate=acti, 

kernel_size=kern, pad=pad)) 

        #self.layers = nn.ModuleList([createConv(inSize, outSize, activate=activate, 

kernel_size=kern, pad=pad) for kern, pad, inSize, outSize in zip(kernels, pads, channels, 

channels[1:])]) 

        self.layers = nn.Sequential(*layerBlock) 

 

    def forward(self, x): 

        x = x.view(-1, 1, 9, 9) 

        for layer in self.layers: 

            x = layer(x) 

        return x 
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# hier definiere ich meine linearen layer 

# eine Funktion zum erstellen von linearen layern 

def createLinear(numInputs, numOutputs, drop, activate): 

    print("created linear layer with {} inputs, {} outputs and activation 

{}".format(numInputs, numOutputs, activate)) 

    return nn.Sequential( 

        nn.Linear(numInputs, numOutputs), 

        nn.BatchNorm1d(numOutputs), 

        nn.Dropout(drop), 

        activator(activate) 

    ) 

 

# Schrittweise Erstellung der linaren layer 

class myLinear(nn.Module): 

    def __init__(self, linLayers, dropout, activate): 

        super().__init__() 

        layerBlock = [] 

        self.layers = nn.ModuleList([createLinear(inSize,outSize, drop, acti) for inSize, 

outSize, drop, acti in zip(linLayers, linLayers[1:], dropout, activate)]) 

         

        for layer in self.layers: 

            nn.init.xavier_uniform_(layer[0].weight) 

            nn.init.zeros_(layer[0].bias) 

         

    def forward(self, x): 

        x = x.flatten(1) 

        for layer in self.layers: 

            x = layer(x) 

        return x 

 

 

# das ist das eigentliche netz 

# hier wird alles zusammen gestellt, die conv und linearen layer 

class pixelNet(nn.Module): 

    def __init__(self, linLayers, dropout, actilin, channels, kernels, pads, acticonv): 

        super().__init__() 

        layerBlock = [] 

        # hier werden die conv layer erstellt 

        if len(kernels) > 0: 

            layerBlock.append(myConv(channels=channels, kernels=kernels, pads=pads, 

activate=acticonv)) 

 

        # hier werden die linearen layer erstellt 

        layerBlock.append(myLinear(linLayers=linLayers, dropout=dropout, activate=actilin)) 

        self.layers = nn.Sequential(*layerBlock) 

 

    def forward(self, x): 

        for layer in self.layers: 

            x = layer(x) 

        return x 
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# plotten wie viele daten in einem datensatz enthalten sind, wie viel für training und 

validierung verwendet werden 

# save ist ein bool der festlegt ob die plots gespeichert werden sollen 

# fileSaveName ist der name unter dem gespeichert wird 

def plotbars(categoryNames, numbers, fileSaveName): 

    fig = plt.figure() 

    plt.title("Number of data points per category") 

    width = 0.3 

    x = np.arange(len(categoryNames)) 

    plt.ylabel("Number of data points") 

    plt.grid(which='both', axis='y', ls=':') 
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    plt.xticks(np.arange(len(categoryNames)), (categoryNames)) 

    plt.bar(x-width,[numbers["{}total".format(name)] for name in categoryNames], width=width, 

label="total") 

    plt.bar(x,[numbers["{}train".format(name)] for name in categoryNames], width=width, 

label="train") 

    plt.bar(x+width,[numbers["{}valid".format(name)] for name in categoryNames], width=width, 

label="valid") 

    plt.legend() 

    fig.savefig("plots/dataSet-{}.png".format(fileSaveName)) 

     

# wie der name sagt, plottet in einem gitter ein paar 9x9 daten 

def previewPlot(categoryNames, train, batchSize): 

    images, labels = next(iter(train)) 

    xsize = int(np.floor(math.sqrt(batchSize))) 

    ysize = int(batchSize/xsize) 

    fig, axes = plt.subplots(ysize,xsize, figsize=(10,10)) 

    k = 0 

    for i in range(ysize): 

        for j in range(xsize): 

            axes[i,j].set_title(categoryNames[labels[k]]) 

            axes[i,j].imshow(images[k].reshape(9,9)) 

            k += 1 

    fig.tight_layout() 

    plt.show() 

 

# plottet die verlust etc funktionen nachdem trainingsprozess 

# save ist ein bool der festlegt ob die plots gespeichert werden sollen 

# fileSaveName ist der name unter dem gespeichert wird 

# ich weiß, dass diese funktion nicht besonders elegant gelöst ist 

# aber sie funktioniert... immerhin etwas 

def plotLoss(titles, epochs, numbers, fileSaveName): 

    x = np.linspace(0,epochs,epochs) 

    ySize = int(np.floor(math.sqrt(len(titles)))) 

    xSize = int(len(titles)/ySize) 

    while ySize*xSize < len(titles): 

        ySize += 1 

    fig, axes = plt.subplots(ySize,xSize, figsize=(10,10)) 

    fig.suptitle("Losses during training") 

    if ySize == 1: 

        for i in range(len(titles)): 

            axes[i].plot(x,numbers[titles[i]].cpu()) 

            axes[i].grid(ls=':') 

            axes[i].set_title(titles[i]) 

            axes[i].set_xlabel("epoch") 

            axes[i].set_ylabel("value") 

    else: 

        k = 0 

        for i in range(xSize): 

            for j in range(ySize): 

                axes[i,j].plot(x,numbers[titles[k]].cpu()) 

                axes[i,j].grid(ls=':') 

                axes[i,j].set_title(titles[k]) 

                axes[i,j].set_xlabel("epoch") 

                axes[i,j].set_ylabel("value") 

                k += 1 

    fig.tight_layout() 

    fig.savefig("plots/losses-{}.png".format(fileSaveName)) 

  

def plotLRLoss(learnRate, trainLoss, validLoss, fileSaveName): 

    fig, ax = plt.subplots() 

    x = np.arange(len(learnRate)) 

    ierror = torch.full((len(x),), validLoss.min()) 

     

    ax2 = ax.twinx() 

    ax.set_ylabel("Learn Rate") 

    ax.set_xlabel('Epoch') 

    ax2.set_ylabel("Losses") 

    ax.grid(ls=':') 

    ax.plot(x,learnRate, color="tab:red", label='Learn Rate') 

    ax2.plot(x,trainLoss, color="tab:blue", label='Traing Loss') 

    ax2.plot(x,validLoss, color="tab:green", label='Validation Loss') 

    ax2.plot(x,ierror, color="tab:grey", ls='--', label='Instrictic Error') 

    ax.legend() 

    ax2.legend() 

    #plt.show() 

    fig.savefig("plots/lrloss-{}.png".format(fileSaveName)) 
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# ich bin mir recht sicher, dass ich die nächsten zwei funktionen zu einer kombinieren kann 

# diese und die nächste machen grob das selbe 

 

# die confusion matrix plottet die tatsächlichen klassen gegen die erratenen klassen 

# daraus kann man TP, FP, TN, FP und alles weitere ableiten 

# save ist ein bool der festlegt ob die plots gespeichert werden sollen 

# fileSaveName ist der name unter dem gespeichert wird 

def plotConfMatrix(dataSet, categoryNames, fileSaveName): 

    fig = plt.figure() 

    plt.title('Confusion Matrix') 

    plt.xlabel("Predicted") 

    plt.ylabel("Classes") 

    plt.yticks(np.arange(len(categoryNames)), (categoryNames)) 

    plt.xticks(np.arange(len(categoryNames)), (categoryNames), rotation=45) 

    plt.imshow(dataSet.cpu(), cmap='Blues') 

    plt.colorbar() 

    threshold = dataSet.max()/2. 

    for i in range(len(categoryNames)): 

        for j in range(len(categoryNames)): 

            plt.text(j, i, format(dataSet[i, j]), horizontalalignment="center", color="white" 

if dataSet[i, j] > threshold else "black") 

    plt.tight_layout() 

    fig.savefig("plots/confMatrix-{}.png".format(fileSaveName)) 

     

# plottet sensitivity etc. für jede klasse in einem übersichtichem diagramm 

# save ist ein bool der festlegt ob die plots gespeichert werden sollen 

# fileSaveName ist der name unter dem gespeichert wird 

def plotClasses(report, categoryNames, scores, fileSaveName): 

    fig = plt.figure() 

    plt.title('Class Report') 

    plt.xlabel("Score") 

    plt.ylabel("Class") 

    plt.yticks(np.arange(len(categoryNames)), (categoryNames)) 

    plt.xticks(np.arange(len(scores)), (scores), rotation=45) 

    imfile = torch.zeros(len(categoryNames), len(scores)) 

    for i, name in enumerate(categoryNames): 

        for j, score in enumerate(scores): 

            imfile[i,j] = report[score][name] 

    plt.imshow(imfile.cpu(), cmap='Reds') 

    plt.colorbar() 

    for i, name in enumerate(categoryNames): 

        for j, score in enumerate(scores): 

            plt.text(j,i, "{0:.2f}".format(report[score][name]), horizontalalignment="center", 

color='white' if report[score][name] >= 0.7 else "black") 

    plt.tight_layout() 

    fig.savefig("plots/reportMatrix-{}.png".format(fileSaveName)) 

     

# bar charts die nichts anderes als die confusion matrix noch einmal anders darstellt 

# es werden die klassen angezeigt und darüber in bars wie viele pro klasse für die klasse 

erraten wurden 

# außerdem wird ein schwarzer strich angezeigt, der sagt wie viele daten für die valierung 

verwendet wurden 

# save ist ein bool der festlegt ob die plots gespeichert werden sollen 

# fileSaveName ist der name unter dem gespeichert wird 

def plotClassErrors(dataSet, categoryNames, numbers, fileSaveName): 

    fig, ax = plt.subplots() 

    plt.grid(which='both', axis='y', ls=':') 

    offset = torch.zeros(len(categoryNames)) 

    target = torch.zeros(len(categoryNames)) 

    for i,name in enumerate(categoryNames): 

        ax.bar(categoryNames, dataSet[i], label=name, bottom=offset, zorder=1) 

        offset = offset + dataSet[i] 

        target[i] = numbers["{}valid".format(name)] 

    plt.scatter(categoryNames, target, marker='_', color='k', zorder=2) 

    ax.set_ylabel("Number of Evenets") 

    ax.set_xlabel("Classes") 

    ax.set_title("Class Prediction Error") 

    ax.legend() 

    fig.savefig("plots/classErrors-{}.png".format(fileSaveName)) 

  

def plotGuesses(guesses, categoryNames, fileSaveName): 

    fig = plt.figure() 

    plt.title('Guesses pre Data Set') 

    plt.xlabel('Output values') 

    plt.ylabel('Number of data points') 
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    plt.grid(which='both', axis='y', ls=':') 

    bins = np.around(np.arange(0,1.1,0.05),1) 

    uniques = np.zeros((len(categoryNames),len(bins))) 

    counts = np.zeros((len(categoryNames),len(bins))) 

    colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:cyan'] 

    for i in range(guesses.shape[1]): 

        for j in range(len(bins)): 

            counts[i][j] = (guesses[:,i] == bins[j]).sum() 

    for i in range(guesses.shape[1]): 

        plt.bar(bins, counts[i], width=0.1, alpha=0.5, color=colors[i], edgecolor=colors[i], 

label=categoryNames[i]) 

    plt.legend() 

    fig.savefig("plots/numberGuesses-{}.png".format(fileSaveName)) 

      

          

# diese funktion plottet die trainings kurven im terminal aus 

# ich mache das damit ich sehe wie das training lief, ohne das programm zu unterbrechen mit 

extra fenstern  

#def plotTerminal(epochs, loss, conf, accu, vali): 

#    x = np.arange(epochs) 

#    loss = np.array(loss) 

#    conf = np.array(conf) 

#    accu = np.array(accu) 

#    vali = np.array(vali) 

#    gp.plot((x, loss, dict(title='losses')), 

#            (x, conf, dict(title='confidence')), 

#            (x, accu, dict(title='accurracy')), 

#            (x, vali, dict(title='validation')), 

#            multiplot='title "training" layout 2,2', terminal = 'dumb 120,60', unset = 

'grid') 

 

# confusion matrix als tabelle ums im terminal zu plotten 

def plotConfTerminal(dataSet, categoryNames): 

    table = PrettyTable() 

    table.add_column("", categoryNames) 

    length = len(categoryNames) 

    for i in range(length): 

        table.add_column(categoryNames[i], dataSet.transpose(0,1)[i].cpu().numpy()) 

    return str(table) 

         

# class report als tabelle ums im terminal zu plotten 

def plotReportTerminal(report, categoryNames, scores): 

    table = PrettyTable() 

    table.add_column("", categoryNames) 

    columns = np.zeros((len(scores), len(categoryNames))) 

    for i, name in enumerate(categoryNames): 

        for j, score in enumerate(scores): 

            columns[j,i] = report[score][name] 

            columns[j,i] = np.round(columns[j,i], 3) 

    for i, score in enumerate(scores): 

        table.add_column(score, columns[i]) 

    return(str(table)) 

     

The preprocessing Code 

import torch 

import numpy as np 

from matplotlib import pyplot as plt 

import sys 

 

categoryNames = ["antideuterons", "pions", "protons", "slowpions", "boxedpions", 

"beambackground", "electrons", "kaons", "gammas", "muons", "slowelectrons"] 

imported, importedMore, indices, onepx = {}, {}, {}, {} 

 

for name in categoryNames: 

    numpyArr = np.loadtxt("data/{}.txt".format(name)) 

    imported[name] = torch.from_numpy(numpyArr) 

    imported[name] = imported[name][:,2:-3] 

 

for name in categoryNames: 

    torch.save(imported[name], "data/{}.pt".format(name)) 

 

for name in categoryNames: 

 imported[name] = torch.load("data/{}.pt".format(name)) 
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 print(imported[name].shape) 

  

combinedNames = ['heavyBG', 'lightBG', 'allBG', 'everything', 'mesonBG'] 

combinedData = {'heavyBG': torch.vstack([imported["antideuterons"],imported["pions"], 

imported["protons"], imported["kaons"]]), 

 'mesonBG': torch.vstack([imported["pions"], imported["kaons"]]), 

 'lightBG': torch.vstack([imported["electrons"],imported["muons"], 

imported["gammas"]]), 

 'allBG': torch.vstack([imported["electrons"],imported["muons"], imported["gammas"], 

imported["antideuterons"],imported["pions"], imported["protons"], imported["kaons"]]), 

 'everything': torch.vstack([imported["electrons"],imported["muons"], 

imported["gammas"], imported["antideuterons"],imported["pions"], imported["protons"], 

imported["kaons"], imported["beambackground"]]) 

} 

 

for name in combinedNames: 

 Index = torch.randperm(len(combinedData[name])) 

 combinedData[name] = combinedData[name][Index] 

 torch.save(combinedData[name], "data/{}.pt".format(name)) 

 

total = 0 

oneTotal = 0 

for name in categoryNames: 

 imported[name] = imported[name].reshape(len(imported[name]),9,9) 

 nonZeros = torch.count_nonzero(imported[name], dim=(1,2)) 

 onepx[name] = torch.sum(nonZeros[nonZeros==1]) 

 indexOne = torch.where(nonZeros==1) 

 indexMore = torch.where(nonZeros>1) 

 importedMore[name] = imported[name][indexMore] 

 total += len(imported[name]) 

 oneTotal += onepx[name] 

 print(name, len(imported[name]), onepx[name]) 

 setMean = imported[name].mean(dim=0) 

 setNorm = setMean - imported[name] 

 index = setNorm.norm(dim=[1,2]).sort(descending=True) 

 indices[name] = index 

 

print('total', total, oneTotal) 

 

for name in categoryNames: 

 importedMore[name] = importedMore[name].reshape(len(importedMore[name]), 81) 

 imported[name] = imported[name].reshape(len(imported[name]), 81) 

 torch.save(importedMore[name], "data/{}-nosinglepixel.pt".format(name)) 

 

combinedDataMore = {'heavyBG': 

torch.vstack([importedMore["antideuterons"],importedMore["pions"], importedMore["protons"], 

importedMore["kaons"]]), 

'mesonBG': torch.vstack([importedMore["pions"], importedMore["kaons"]]), 

'lightBG': torch.vstack([importedMore["electrons"],importedMore["muons"], 

importedMore["gammas"]]), 

'allBG': torch.vstack([importedMore["electrons"],importedMore["muons"], 

importedMore["gammas"], importedMore["antideuterons"],importedMore["pions"], 

importedMore["protons"], importedMore["kaons"]]), 

'everything': torch.vstack([importedMore["electrons"],importedMore["muons"], 

importedMore["gammas"], importedMore["antideuterons"],importedMore["pions"], 

importedMore["protons"], importedMore["kaons"], imported["beambackground"]]) 

} 

 

for name in combinedNames: 

 Index = torch.randperm(len(combinedDataMore[name])) 

 combinedDataMore[name] = combinedDataMore[name][Index] 

 torch.save(combinedDataMore[name], "data/{}-nosinglepixel.pt".format(name)) 

 

fig = plt.figure() 

plt.title("Number of events per data set") 

width = 0.5 

x = np.arange(len(categoryNames)) 

plt.ylabel("Number of events") 

plt.grid(which='both', axis='y', ls=':') 

plt.xticks(np.arange(len(categoryNames)), (categoryNames), rotation=45) 

plt.bar(x-width/4, [len(imported[name]) for name in categoryNames], width=width/2, 

label='total') 

plt.bar(x+width/4, [onepx[name] for name in categoryNames], width=width/2, label='one-pixel') 

plt.legend() 

plt.savefig('dataSet.png') 
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for name in categoryNames: 

 importedMore[name] = importedMore[name].reshape(len(importedMore[name]), 9,9) 

 imported[name] = imported[name].reshape(len(imported[name]), 9,9) 

 

fig, axes = plt.subplots(len(categoryNames),7, figsize=(20,20)) 

fig.suptitle("preview") 

for j, name in enumerate(categoryNames): 

 axes[j,0].set_ylabel(name) 

 for i in range(2): 

  axes[j,i].tick_params(labelleft=False, labelbottom=False, left=False, 

bottom=False) 

  axes[j,i].imshow(imported[name][indices[name][1][i].item()]) 

  axes[j,i].set_title('Most deviating') 

 for i in range(3): 

 

 axes[j,i+2].imshow(imported[name][indices[name][1][int(len(imported[name])/2)].item(

)-1+i]) 

  axes[j,i+2].tick_params(labelleft=False, labelbottom=False, left=False, 

bottom=False) 

  axes[j,i+2].set_title('Mean deviation') 

 for i in range(2): 

  axes[j,i+5].tick_params(labelleft=False, labelbottom=False, left=False, 

bottom=False) 

  axes[j,i+5].imshow(imported[name][indices[name][1][-(i+1)].item()]) 

  axes[j,i+5].set_title('Least deviating') 

plt.savefig('preview.png') 
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C. Code Explanation 

This code needs the following libraries in order to run: 

• PyTorch 

• Numpy 

• Matplotlib 

• progress.bar / progress 1.5 

• prettytable 

• argparse 

• configparser 

It works rather simple, there is a default setting and one can execute the code by 

running it with: 

$python nn.py 

Then the code runs the following setup: 

• batchSize = 64 

• learnRate = 0.1 

• momentum = 0.9 

• epochs = 50 

• kFold = 4 

• weightDecay = 0. 

• a flat learning rate 

• SGD as optimizer 

• 65% of each data set will be used to train 

• training will only happen, if no network model will be found 

• single pixel events will be included 

• no output will be saved 

• it will run on the CPU, with maximum amount of threads 

• Beam Background, Anti-Deuterons, Pions, Protons and Slow Pions will be used 

to train 
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This configuration is declared within the settingsClass, which is located in the helper.py 

file. The default network settings are in the networkClass, which is also located in the 

helper.py, the default settings here are: 

• input layer with 49 neurons and 0% dropout rate, ReLU activation 

• hidden layer with 21 neurons and 0% dropout rate, ReLU activation 

• output later with 4 neurons and 0% dropout rate, Softmax activation 

 

In order to adjust these settings, one can use either CLI input flags, that is why argparse 

is necessary or use an input file. An input file can be read by the following command: 

$python nn.py -i name_of_input 

One than has to specify an input file. I will provide a full list of input flags in a table 

and illustrate how to use them with an example input file. Every input file consists of 

two categories: 

[SETTING] 

and 

[NETWORK] 

 

Here follow the tags for the [SETTINGS] class: 

Short Flag Flag Description 

-i --infile define name of settings file 

-o --outfile define name of output files 

-b --batchSize sets the batchsize 

-l --learnRate sets the learning rate 

-m --momentum sets the momentum 

-e --epochs sets the number of epochs 

-k --kFold sets the of k-folds 

 --optim define the optimizer used 

-w --weightDecay sets the weight decay for 

optimizer 
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 --scheduler define the scheduler used 

-g --gamma factor by which learnRate 

is reduced 

-s --stepSize step size with which to 

reduce learnRate 

 --milestones sets the milestones at 

which learning rate 

should change 

 --learnMax the maximum learnRate 

for lambda scheduler 

 --learnMin the minimum learnRate 

for lambda scheduler 

 --learnPeak  the epoch of learnRate 

peak for lambda scheduler 

 --nesterov switches SGD to the 

Nesterov variant 

 --rho coefficient for running 

average of squared 

gradients 

 --eps numerical stability 

constant for optimizer 

 --alpha smoothing constant for 

RMSprop 

 --learnRateDecay determines the falloff for 

adagrad learnrate 

 --beta runnung average gradient 

coefficients for adam 

 --datapath sets where the data to be 

analyzed are stored 

 --nosinglepixels exclude single pixel events 
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-sf --setFactor sets a factor for the total 

amount of data per set 

 --balanced should all data sets be 

about the same size? 

-d --device sets the processing device 

{cpu, cuda} 

-t --threads sets the number of 

processes 

-c --categories specify the train/valid 

categories {dd, pi, pp, sp, 

bp, bg, test} 

 --retrain force to retrain the net 

 --save save output data 

 

And here follow the tags for [NETWORK] class: 

Short Flag Flag Description 

-ll --linLayer defines number of 

neurons per layer 

-do --dropout defines the dropout rate 

per layer  

-al --actilin defines the activation per 

layer 

-ch --channels defines the number of 

channels per convolution 

-ks --kernelSize defines the kernel size per 

convolution 

-pd --padding defines the padding size 

per convolution 

-ac --acticonv defines the activation per 

convolution  
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If some settings are not given or would generate errors, the code will try to fix it and 

print some information about the settings and adjustments. There is some caution 

advised and one should be aware of settings changes. 

An example input file: 

 

[SETTINGS] 

retrain = True 

categories = sp+bb 

outfile = 01convs9C3KFixed 

batchSize = 128 

setFactor = 0.35 

balanced = True 

epochs = 100 

optim = adam 

learnRate = 0.00001 

momentum = 0.15 

gamma = 1 

eps = 1e-08 

scheduler = step 

learnMax = 0.00005 

cycles = 5 

nosinglepixels = True 

 

[NETWORK] 

dropout = 0, 0.5 

actilin = relu 

linLayer = 81, 81, 81, 81, 81, 2 

acticonv = relu 

kernelSize = 3 

padding = 0 

channels = 1, 9 
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After a successful run and if one specified, that outputs should be saved, then the code 

will plot some graphs detailing the run and will save them to the directory plots. More 

important is the run log file, which will be saved into the directory outputs. 

There will be five plots per run. The loss curves, together with a confidence and training 

accuracy plot. Confidence is the corresponding value of the guess. The networks output 

is a list of floats, one float per category, and they are normalized to be used as 

probability. Confidence is simply the largest number from this list. Next is the 

confusion matrix and based on that a plot called class error, which is just a different 

way representing the confusion matrix. Here each bar represents the guesses per 

category, each color represents the actual class. The fourth plot is a report matrix, a 

collection of different scores per category and it is based on the confusion matrix. The 

last plot shows the winning guess value per category. 

The output file lists the run settings, the network settings, some information about the 

categories used in this run. Then comes a list of each epoch with the values: 

• learnning rate 

• training loss 

• validation loss 

• training accuracy 

• confidence 

And finally, how long the run took, some training statistics and the same scores as the 

report plot, but as a table, are written in the output log. In the output log is also the 

confusion matrix and a list of all scores per category. 
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