Belle II エアロジェル RICH の実機へ向けた光検出器 HAPD の性能改善と最終評価

名古屋大学大学院 理学研究科 素粒子宇宙物理学専攻 N 研究室

260901130 今村美貴

January 24, 2011

概 要

現在の素粒子物理学における喫緊の課題である新しい物理を含む崩壊事象の観測を目指し、 2014年から BelleII 実験を開始する。本実験は高エネルギー加速器研究機構の電子・陽電子衝 突型加速器を用いて、B 中間子の稀崩壊事象の検出を行う。そこで非常に重要である K/ 粒 子識別を行うため、BelleII 検出器の前方 Endcap 部分には、粒子識別装置であるエアロジェ ル Ring Imaging Cherenkov(RICH) 検出器を実装する。RICH は、輻射体であるエアロゲル 内で放射されたチェレンコフ光を光検出器 Hybrid Avalanche Photo Detector(HAPD) で再 構成して捉え粒子識別を行う。

RICHの粒子識別能力はHAPDの性能に大きく依存する。HAPDは真空管と半導体検出器 APDを合わせた構造をもつ。本論文では、実装に際して残された2つの課題を具体化し検証した。

第一の課題は、面全体に亘り十分な量子効率をもつ HAPD の製作である。2011年6月に HAPD の大量生産を予定しており、量子効率の一様性を評価することが重要であった。そこ で私は評価システムの構築により、これまでに製作されたサンプルについて面一様性を確認 した。また 2009年11月には、量子効率30%以上をもつサンプルで初めてビームテストを行 い、検出光子数はこれまでのサンプルの1.3倍にまで増加することが出来た。

第二の課題は、APD に対する放射線耐性である。BelleII 実験の 10 年間で予想される放射 線量に対する耐性を検証するために、中性子と 線の照射試験を行った。中性子照射による 一光子検出能力の悪化を招くノイズの増大は、半導体の厚さに依存すると予想出来る。厚さ の異なる APD を用いた照射試験により、アバランシェ領域における P 層を薄くすることが 効果的であると実証した。そして P 層の薄い HAPD を製作し、1 × 10¹² (neutron/cm²) 照射 後も十分な精度 S/N ~ 12 での一光子検出を確認した。 線耐性は、10 数 krad から検出器再 内層では 100krad 程度必要である。5,10,30krad の照射量に対して、表面電流の測定により引 き起こされる現象を理解した。

以上より、量子効率の一様性を評価し、放射線耐性試験の結果より仕様を決定した。HAPD の大量生産を開始と、2014 年から BelleII 十年間で RICH の稼働が期待できる。

目 次

第1章	Introduction	7
1.1	Belle 実験	7
	1.1.1 KEKB 加速器	8
	1.1.2 Belle 検出器	9
1.2	Belle II 実験	9
	1.2.1 K/ 粒子識別	9
第2章	エアロジェル RICH 検出器	12
2.1	Cherenkov Counter	12
2.2	Aerogel RICHの性能	15
	2.2.1 角度分解能	15
	2.2.2 K/ 識別能力	16
	2.2.3 エアロジェル RICH 検出器の構成	17
2.3	光検出器 HAPD とこれまでの開発経緯	19
	2.3.1 HAPDの増幅原理	19
	2.3.2 APD の構造と原理	19
	2.3.3 HAPD の仕様	20
	2.3.4 これまでの開発の経緯	21
	2.3.5 本研究の目的	24
第3章	量子効率の測定と評価	26
3.1	研究背景....................................	26
3.2	測定装置の構築....................................	27
	3.2.1 測定方法とセットアップ	27
	3.2.2 動作テスト	29
	3.2.3 測定可能な波長領域	31
3.3	Uniformity の評価	31
3.4	High QE 対策品	33
3.5	エアロジェル RICH 検出器のプロトタイプ試験	37
	3.5.1 セットアップ	37
	3.5.2 測定結果	38

第4章	HAPDの放射線耐性の評価	41
4.1	中性子照射試験	41
	4.1.1 Belle 環境下で必要な中性子耐性	41
4.2	半導体に与える影響	44
	4.2.1 APD の改良	45
	4.2.2 厚さの異なる APD を用いた照射試験結果	49
4.3	改良 APD を用いた HAPD の中性子耐性	54
	4.3.1 P 薄 APD を用いた HAPD	54
	4.3.2 P 薄 APD を用いた HAPD の照射試験	55
4.4	線照射試験	59
	4.4.1 BelleII 環境下で必要な 線耐性	59
	4.4.2 半導体に与える影響	59
	4.4.3 照射方法	62
	4.4.4 照射するサンプル	62
	4.4.5 測定項目	62
	4.4.6 測定結果	63
	4.4.7 考察	68
ᄷᆞᆞᅭ	+ L H	=0

第5章 まとめ

図 E	1次
--------	----

1.1	KEK
1.2	KEK 加速器 8
1.3	Belle II 検出器
1.4	Belle 検出器における K/ 粒子識別装置 11
2.1	Cherenkov 光の放射
2.2	
2.3	Aerogel RICH の例。 左が近接焦点型、石が mirror focusing 型 15
2.4	エアロジェルの写真 17
2.5	エアロジェルの構造17
2.6	APD の構造と電場配置 20
2.7	HAPD の構造図 21
2.8	HAPD の実物写真
2.9	Chip の漏れ電流とアバランシェゲイン 22
2.10	印加電圧に対して得られる打ち込みゲイン
2.11	144pixel HAPD の仕様 23
2.12	一光子検出能力
2.13	1Chip $\boldsymbol{\sigma}$ Gain $\boldsymbol{\varepsilon}$ S/N
2.14	1.5T の磁場中での測定
2.15	照射量に対する漏れ電流の増加量 25
2.16	ASICを用いた一光子信号とノイズ分布 緑はノイズ、赤は一光子信号成分を
	示す。
21	発生来之物とOFの沖戸体方性
0.1	元王九丁奴と QB の波夜低行住 「同文 $20[mm]$ 」 屈折変 1.05 のエフロジェルた使用している
<u>ว</u> า	厚さ 20 [mm]、油灯 21.05 のエアロクエルを使用している。
ა.∠ ე.ე	QL 例 \mathcal{L} の \mathcal{L} ツ \mathcal{L} ア \mathcal{L} ク \mathcal{L} ク \mathcal{L} ク \mathcal{L} ク \mathcal{L} ク \mathcal{L} ク \mathcal{L}
ა.ა ე_4	PDのQL
3.4 2.5	例 上 衣 且 切 与 具
3.5 9.6	=400nm のとさの QE 万巾 30
3.6	=400nm のとさの QE 分布 31
3.7	HAPD の電流値

3.8	PD の電流値
3.9	Xe ランプによる測定 32
3.10	SHP077の =360nmのときの144点のQE値 33
3.11	SHP077の波長毎の面一様性
	5mm 間隔で 15 × 15 点測定した。各軸で 1point=5mm である。 34
3.12	High QE 対策品の QE の波長依存性
3.13	High QE 対策品の 360nm のときの QE 分布
3.14	SHP117 の波長毎の面一様性
	5mm 間隔で 15 × 15 点測定した。各軸で 1point=5mm である。
3.15	プロトタイプ試験のセットアップ
3.16	プロトタイプ試験のシステムの写真
3.17	2008 年度の配置と QE と QE(=400[nm])
3.18	今回の HAPD の配置と QE(=400[nm]) 39
3.19	各 HAPD 毎の QE と検出光子数
3.20	リングイメージとチェレンコフ角度分布40
4.1	
4.1 4.9	
4.2 1 2	
4.0	
4.4	
4.5	(a)伯」的に八际」 (b) 伯」入知····································
4.0	
4.0	
47	χ に。) · · · · · · · · · · · · · · · · · · ·
4.1 1 8	1709929ルCEE加重 ···································
4.0 4.0	
4 10	
4 11	弥生の中性子スペクトル 50
4 12	3×10^{11} (neutron/cm ²) 昭射後の漏れ雷流の増加量 5(
4.13	3×10^{11} (neutron/cm ²) 昭射後のノイズの増加量 5000000000000000000000000000000000000
4.14	5×10^{11} (neutron/cm ²) 昭射後の漏れ雷流の増加量 51 5 5 × 10 ¹¹ (neutron/cm ²) 昭射後の漏れ電流の増加量 51
4.15	5×10^{11} (neutron/cm ²) 照射後のノイズの増加量 51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4.16	1×10^{12} (neutron/cm ²) 照射後の漏れ電流の増加量 51 51 51 51 51 51 51 51 51 51 51 51 51
4.17	1×10^{12} (neutron/cm ²) 照射後のノイズの増加量 51 51 51 51 51 51 51 51 51 51 51 51 51
4.18	照射量に対する漏れ電流の増加量
4.19	Shaping time を変化させたときの HAPD のノイズ量の見積もり 55
4.20	KA0003の漏れ電流の増加量

4.21	KA0003 ChipB Ch.22 Single photon 応答	56
4.22	KA0003 ChipB Ch.22 Single photon 応答	56
4.23	異なる APD を用いた HAPD(KA0003 と KA0006) の比較	57
4.24	漏れ電流の増加量の比較................................	57
4.25	N 厚 APD を用いた HAPD(ChipA) の Single photon 応答	58
4.26	N 厚 APD を用いた HAPD(ChipC) の Single photon 応答	58
4.27	N 厚 APD を用いた HAPD(ChipD) の Single photon 応答	58
4.28	BelleII 環境下での 線量の見積もり	59
4.29	CMS で使用している APD の構造 [5]	61
4.30	バイアスの有無による電流値の違い[3]	62
4.31	^{60}Co 照射室	63
4.32	制御室	63
4.33	APD の構造	63
4.34	照射前後の Gain の比較	65
4.35	照射中の表面電流・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
4.36	5krad 照射後の漏れ電流	67
4.37	10krad 照射後の漏れ電流	67
4.38	30krad 照射後の漏れ電流	68
4.39	照射量に対する漏れ電流値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
4.40	照射量に対する漏れ電流値のまとめ.....................	70
4.41	Ch. 単位での漏れ電流の測定の回路図	71
4.42	Ch. 単位での漏れ電流の測定	71
4.43	5979 全 144Ch の 線照射前のノイズ量	72
4.44	5979 全 144Ch の 線照射後のノイズ量	73
4.45	照射後の漏れ電流値に対するノイズ量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
4.46	各 Ch. 毎のバイアス電圧に対するノイズ量の変化	74
4.47	照射後の漏れ電流とノイズ量の位置依存性..............	74
4.48	APD の ChipA の Ch. の配置図	75

表目次

1.1 1.2	Belle II 実験における粒子識別の必要な崩壊モードと運動量領域 各識別装置の K/ 識別可能な運動量領域	10 11
1.2		11
2.1	物質の屈折率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
3.1	使用した HAPD の型番と使用目的	27
3.2	QE 測定における電流値	30
3.3	HAPD No.5 の検出光子数	40
4.1	放射線テストの内容と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
4.2	主要性能	
	ガンマ線や熱中性子の混入のほとんどない環境で、0.1[MeV] 以上の高いエネ	
	ルギーをもつ高速中性子を利用できる。	48
4.3	$1 imes 10^{12} (ext{neutron/cm}^2)$ 照射後のゲイン 40 のときの漏れ電流の増加量とノイ	
	ズの増加量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
4.4	P 薄 APD を用いた HAPD の基本性能	
	() 内の数値はアバランシェゲインの値を表わす。	54
4.5	広島大学の 線照射試験結果-照射前後の漏れ電流の変化	61
4.6	サンプル一覧	64
4.7	線損傷による劣化の予測と測定結果のまとめ...............	69

第1章 Introduction

1.1 Belle 実験

2010年6月、我々が電子・陽電子衝突型加速器を用いて行った Belle 実験は多くの成果を 残し、終了した。

Belle 実験は B 中間子の崩壊における CP 対称性の破れを詳細に測定し、標準モデルに導入された小林・益川理論の検証を行うことを主目的として 1999 年より、茨城県つくば市にある高エネルギー加速器研究機構 (KEK)(図 1.1) において開始した実験である。電子・陽電子衝突型加速器である KEKB 加速器を用いて B 中間子を大量に生成し、KEKB 加速器上の 衝突点に設置された Belle 検出器を用いて B 中間子の崩壊過程を精密に測定する。これにより、2001 年には中性 B 中間子 (B⁰ または $\overline{B^0}$)の J/と K^0 への崩壊過程で大きく CP 対称性が破れていることを発見し、小林・益川理論を証明した。またその他にも、X(3872)の発見や、D 中間子と反 D 中間子の混合の発見等、様々な成果を上げている。

🗷 1.1: KEK

これらの成果に対する、世界最高のピークルミノシティを記録した KEKB 加速器と崩壊過

程に現れた粒子を効率良く検出し区別できる Belle 検出器の貢献は大きい。以下に、KEKEB 加速器と Belle 検出器について説明する。

1.1.1 KEKB 加速器

KEKB 加速器は、2つのリングを用いて電子・陽電子をそれぞれ 8[GeV/c] と 3.5[GeV/c] で 加速させる非対象エネルギー電子・陽電子型円形加速器である。図 1.2 に KEKB 加速器を示 す。電子・陽電子の衝突における重心系でのエネルギーを (4s)の質量である 10.58[GeV/c] にあわせることで、 (4s) B \bar{B} により、大量の B \bar{B} 対を作りだす。ここで、電子・陽電子 のエネルギーを非対称にしているのは、 (4s) に 4.5[GeV/c] の運動量を与え、生成された B 中間子に 2[GeV/c] 程度の運動量を持たせることにより、生成点から崩壊点までの飛行距離 を測定可能な量(約 200 µ m)まで延ばす為である。上記以外にも、KEKB 加速器では、高 いルミノシティを達成するために数多くの試みがなされている。

例えば、世界で初めてクラブ空洞と呼ばれるバンチに角度を持たせて衝突させる方法を用 いることで、衝突頻度を上げている。電子・陽電子のそれぞれのリングには約 1400 バンチ が約 2m 間隔で並んでいる。1 バンチあたり約 10^{10} の電子もしくは陽電子が含まれ、衝突点 付近でのバンチサイズはL×H×W=2×0.008×0.3[mm^2] になる。また先に上げたクラブ 空洞によりピークルミノシティーは $2.11 \times 10^{34} cm^{-2} s^{-1}$ となり、年間 1 億対もの B 中間子を 生成している。

図 1.2: KEK 加速器

1.1.2 Belle 検出器

B 中間子の崩壊における CP の破れを観測するためには、生成した B 中間子の初期状態の決 定と崩壊までの移動度を精度よく測定する必要がある。そのために開発された検出器が Belle 検出器である。Belle 検出器はは、縦横高さが約 7m × 7m × 7m、重量は 2000t にも及ぶ。ま た、非対称エネルギーの加速器に対応させ、測定機も衝突点に対して前後方向非対象に設計 され、電子ビームの方向からの角度が 17 度から 150 度の領域をカバーしている。内側より、 SVD (Sillicon Vertex Detector)、CDC(Central drift Chamber)、ACC(Aerogel Cherenkov Counter)、TOF(Time Of Flight)、ECL(CsI Electronic CaLorimeter)、solenoid、KLM(K_L & μ detector)で構成されている。

1.2 Belle II 実験

Belle 実験の後継実験として、2014 年から Belle II 実験の開始を予定している。

Belle 実験では B 中間子が、新しい物理の関与を示唆する結果がいくつか得られているが、 これに明確な結論を得るためには 10ab⁻¹ 以上の積分ルミノシティに基づく詳細な解析が必 要である。また4つのクォークからなると考えられている新しい種類の共鳴状態の発見もな されているが、10ab⁻¹ のデータの蓄積があればこのような多クォーク状態の解明も可能とな る。よって、これらの目的で 10ab⁻¹ のデータ蓄積を目標として加速器と検出器の高度化を 図る。

加速器に対しては、「ナノ・ビーム方式」に基づいた全面的改造を施し、現在の 40 倍のピーク・ルミノシティ8 × $10^{35} cm^{-2} s^{-1}$ を目指す。具体的には、衝突点における垂直方向のビームサイズを 50-60[nm] に絞り込み、同時に蓄積電流を現在の 2 倍に増加することによって、目標値を実現する計画である。2014 年の実験開始から、6 年程度で 50 ab^{-1} を蓄積することを目標とする。

検出器においても、ルミノシティを増強した KEKB で実験を行うためには改良が必要で ある。(図1.3参照。)最も重要なのは、かつてない大電流と超高ルミノシティがもたらす高 計数環境で安定に動作し、かつ高い性能を発揮できることである。加えて超高ルミノシティ によってもたらされる稀少現象を見逃さないために、優れた粒子識別能力が必要である。次 節で粒子識別装置の重要性と要求性能について述べる。

1.2.1 K/ 粒子識別

粒子識別の重要性

高エネルギー物理学における粒子生成崩壊反応の解析は、検出可能な終状態粒子である、 e^{\pm} 、 μ^{\pm} 、 $^{\pm}$ 、 K_L 、 K^{\pm} 、pのデータから系統的に行なわれる。そのため明確に粒子同定されたデータを提供できる実験装置が非常に重要である。

図 1.3: Belle II 検出器

この中でもKとは質量が非常に近く、また同じハドロンであるため識別が難しい。そのため、現在では上に述べたような終状態のうち、K/の識別に焦点をあてた識別装置の研究が広く行なわれている。Belle II 実験では表のような崩壊モードの解析を行なうため、明確に粒子識別されたK/のデータが不可欠である。

物理事象	崩壊モード	運動量 [GeV/c]	バックグラウンドモード
フレーバータギング	b c s	0.2	
$_1$ の測定	B J/ K _s	-	-
$_2$ の測定	В	1.8	B K
₃の測定	B DK	1.5	B D

表 1.1: Belle II 実験における粒子識別の必要な崩壊モードと運動量領域

ここでは K/ 粒子の識別方法について説明する。粒子識別は、粒子の質量 m をもとめる ことで行う。粒子の質量 m は、その粒子の運動量 p と相対論的速度 (= v/c、c 空中で の光速度) から、式で表せる。

$$m = p \sqrt{\left(\frac{1}{....}\right)^2 - 1} \tag{1.1}$$

この式からわかるように速度 と運動量 p を検出器群によって求めることで、式より質量 m が同定でき、K/ 粒子の識別をができる。

$$p[GeV/c] = 0.3 \quad [m]B[T]$$
 (1.2)

運動量 p は一般的に磁場中に設置された飛跡検出器 (ドリフトチェンバー等) で荷電粒子の軌 跡の曲率半径 を測定し、磁場の強さ B を用いて、式から求められる。

識別装置	バレル部分	エンドキャップ部分
CDC(dE/dx)	p < 0.8, 2.5 < p < 5.0	-
ACC	0.6	0.5
TOF	p < 1.2	-

表 1.2: 各識別装置の K/ 識別可能な運動量領域

K/ 識別は高運動量領域での識別が困難であるが、Belle 検出器では、3 つの検出器の情報を組み合わせることで低運動領域から高運動領域までをカバーしている。(図 1.4 参照。) 粒子の速度を求める方法としてドリフトチェンバーによる dE/dx 法、エアロジェルチェレン

図 1.4: Belle 検出器における K/ 粒子識別装置

コフカウンターによる閾値法、TOP(Time-Of-Propagation)カウンターによる飛行時間測定 法が用いられていた。この3つの検出器はそれぞれに対応する運動量領域が異なっており、 下記の表のとおりである。

K/ 識別の重要性

CP 対称性の観測は、親粒子が B⁰ であるか $\bar{B^0}$ であるかを判別するフレーバータギングが 重要な役割を果たす。フレーバータギングは B 崩壊した終状態をみるため、K/ 識別が非 常に重要になる。また、K 粒子と 粒子は、B KK/K / や、B D /DK のような 運動量の高い二体崩壊においても現れ、 /K 識別が重要になる崩壊モードは多数存在して いる。従って、より広い運動量領域でより良い精度での K/ 識別が要求される。これより ACC に代わる検出器として、バレルエンドキャップ部分にはエアロジェル RICH 検出器を実 装する。識別可能な運動量領域を $0.5 \text{GeV/c} \sim 2 \text{GeV/c}$ から、 $0.5 \text{GeV/c} \sim 4 \text{GeV/c}$ まで広げ、 識別性能は運動量を 4 GeV/c で 4 を目指す。

第2章 エアロジェルRICH検出器

2.1 Cherenkov Counter

Cherenkov Counter とは、荷電粒子が輻射体中を、その物質での光速よりも速い速度 (n ≥1)で通過するときに放射される Cherenkov 光を光検出器で読み取る測定器である。Cherenkov 効果を簡単に説明しておく。まず、荷電粒子が誘電体中を進むと行路周辺の媒質が分極する。 粒子の速度が遅い時には分極は粒子を中心とする対称の分布をする。しかし粒子の速度が大 きい時には分極は非対称になり、粒子の進行方向に電気双極子とみなせるようになる。粒子 が進むにつれて分極は戻って行くが、分極が電気双極子とみなせる場合には、分極が一斉に 戻るため放射される電磁波の位相が揃い観測可能な光となる。これが Cherenkov 光である。 Cherenkov 光は図 2.1 のように放射される。粒子識別のためには 2 つのタイプの Cherenkov Counter があり、閾値型と呼ばれるものと、リングイメージ型(RICH)と呼ばれるものがあ る。それぞれについては次に述べる。

図 2.1: Cherenkov 光の放射

閾値型 Cherenkov Counter

閾値型 Cherenkov Counter は、輻射体の屈折率 n と粒子の運動量 P によって Cherenkov 光が放射されるか否かが決まっていることを利用したものである。それは粒子の質量 m と光速 c を用いて次のように表される。

$$P = \frac{mc}{\sqrt{n^2 - 1}}\tag{2.1}$$

またこの関係をグラフにすると図2.2のようになる。曲線よりも上側の領域ではCherenkov 光が放射される。したがって、ある運動量領域において識別したい2種の粒子に合わせて 輻射体の屈折率を調節すれば、質量の大きい粒子からはCherenkov光は放射されず、他 方の質量の小さい粒子だけから放射される。例えば輻射体の屈折率が1.02の時、運動量 2.0GeV/cの 中間子と 中間子が輻射体中を通過すると、 中間子からはCherenkov 光が放射され、K中間子からは放射されない。このように、閾値型 Cherenkov Counter は、Cherenkov光が放射されたか否かで粒子識別を可能にする測定器である。

図??を見てもわかるように、高運動量の粒子識別をするためには屈折率を低く、低運動量の時には屈折率を高く設定する必要がある。見たい運動量領域に合わせて、屈折率を設定することが重要である。実際には、輻射体の屈折率を低くするとその扱いが簡単ではなくなるため、閾値型 Cherenkov Counter は低運動量(~1GeV/c)での粒子識別に適していると言える。輻射体にエアロジェルを用いた閾値型 Cherenkov Counter は Belle 検出器で K/ 中間子の識別に用いられた。

図 2.2: Cherenkov 放射の閾値曲線

リングイメージ型 Cherenkov Counter(RICH)

荷電粒子が輻射体となる媒質中を通過する際発生する Cherenkov 光は、媒質中での進行 方向に対して、Cherenkov 角 $_c$ を持って放出される。速度 は屈折率 n と Cherenkov 角 $_c$ によって以下のように表される。

$$=\frac{1}{\sqrt{n\cos}}\tag{2.2}$$

さらに、このとき求まる荷電粒子の速度 と、他の方法により求めた運動量 p より、式 (2.2)を使って、

$$m = p\sqrt{(n\cos)^2 - 1}$$
 (2.3)

と表され、この式から通過荷電粒子の質量 m が決定され、通過した粒子の同定が可能 となる。Ring Image Cherenkov(RICH) では、この通過粒子に対する Cherenkov 角の 決定により行われる粒子同定が粒子識別の原理となる。輻射体により円錐状に放出さ れたチェレンコフ光を高い位置分解能を持った光検出器でリングイメージ (Cherenkov リング)で捉え、その半径より Cherenkov 角を求めるのである。RICH 検出器による粒 子識別では、通過する粒子に対し直接 Cherenkov 角を算出し、粒子同定を行うもので あるため、閾値型の担っていた低運動量領域もカバーしつつ、高い運動量領域でも粒 子識別を可能とすることができる。

RICH 検出器は大きく分けて、放出された Cherenkov 光をミラーで集光し、それを光 検出器で捉える" Mirror focusing RICH"と、放出された Cherenkov 光をそのまま捉え る" Proximity focusing RICH"の2タイプがある。図2.3 に各タイプの RICH の構造を 挙げる。Mirro focusing 型では集光ミラーにより輻射体内での Cherenkov 光放出点の不 定性による Cherenkov リングのぼやけを抑えることができ、そのため Cherenkov 角の 決定精度が上がる。また、厚い輻射体を用いて容易に多光量を得ることが可能である。 しかし、集光ミラーを用いるため検出器の規模が大きくなってしまう。一方、Proximity focusing 型では集光ミラーを用いないため、決定精度は Mirro focusing 型より劣るもの の、検出器自体がコンパクトに構成できる利点がある。しかし、光検出器には高い位 置分解能が必要となってくる。我々が開発しているエアロジェル RICH 検出器は Belle 検出器のエンドキャップ部分での使用を想定している。エンドキャップ部では空間的 制約が厳しい (奥行き約 30[cm])。そのため我々は Belle II 検出器のジオメトリーに Proximity focusing 型を採用した。

図 2.3: Aerogel RICH の例。左が近接焦点型、右が mirror focusing 型

2.2 Aerogel RICHの性能

2.2.1 角度分解能

エアロジェル RICH の特徴は、識別したい粒子が通過した時にそれぞれの Cherenkov 光の リングイメージを見ることで粒子識別できることである。つまり閾値型の on/off の情報よ りも、粒子それぞれの Cherenkov 角という多くの情報でもって積極的に識別が可能である。 そこで重要になってくるのが角度分解能である。リングイメージを捉えるためリングのぼや けが少ないほど粒子識別に適している。例えば、4GeV/cのK/中間子の Chrenkov 角の角 度差は、屈折率が 1.05 の輻射体を用いた場合約 23mrad であり、角度分解能はそれよりも高 精度でなければならない。エアロジェル RICH 検出器の角度分解能に寄与する要素として、 我々の研究では次の 3 点がわかっている。

- 光検出器のピクセルサイズ (*pixel*)
- エアロジェル中でのエミッションポイントの不定性 (emit)
- Cherenkov 光の波長の違いによる屈折率の揺らぎ (_{chrom})

また実際はこれら以外の未知の要素の寄与もあるため、その寄与を etc とする。以上の4つの要素からエアロジェル RICH 検出器の角度分解能 は次の式で表される。

$$= \sqrt{(\ _{pixel})^2 + (\ _{emit})^2 + (\ _{chrom})^2 + (\ _{etc})^2}$$
(2.4)

この内、角度分解能への寄与が大きいのは *emit* と *pixel* である。Cherebkov 放出角は式によって直接計算される。Cherebkov 光発生点の不定性、光検出器のピクセルサイズによる不

定性はそれぞれ式のLおよびrの誤差であると考えると

$$_{emit} + \quad _{pixel} = \left| \frac{\partial}{\partial L} \right| \Delta L^2 + \left| \frac{\partial}{\partial r} \right| \Delta r^2$$
(2.5)

$$_{emit} = \frac{d\sin c \cos c}{l\sqrt{12}} \tag{2.6}$$

$$_{pixel} = \frac{A\cos^2 \quad c}{\sqrt{12}} \tag{2.7}$$

となる。ここでのdは厚み、Lは光検出器のpixelサイズ、lはエアロジェルの中心から光検 出器までの距離、

$$1 = L - \frac{d}{2} \tag{2.8}$$

である。Belle II 検出器内では、L=200mm に制限されており、我々が開発研究中である輻射体の厚さは角度分解能や検出光子数から d=20~40[mm] を想定している。d=20[mm] のときに $_{emit}=8 \times 0^3$ となる。このとき $_{pixel}=_{emit}$ とすると、式から A=6mm となる。よってピクセルサイズは約5mm 以下の値が望まれる。

2.2.2 K/ 識別能力

エアロジェル RICH 検出器の粒子識別能力を S として、、1 トラック当たりの角度分解能、 *_K*を用いて以下のように S を定義する。

$$S = \frac{-K}{+K} (2.9)$$

 $_{K}$ および は K および 中間子による Cherenkov 角である。1 トラックあたりの角度分 解能は、1 光子あたりの角度分解能 $^{1p.e.}$ 、 $^{1p.e.}_{K}$ と検出光子数 $N_{p.e.}$ を用いて近似的に、

$$S = \frac{\frac{1_{p.e.}}{K}}{\sqrt{N_{p.e.}}}, S = \frac{\frac{1_{p.e.}}{\sqrt{N_{p.e.}}}}{\sqrt{N_{p.e.}}}$$
(2.10)

のように表わされる。エアロジェル RICH 検出器の性能を向上させるためには1光子あたり の角度分解能と、検出光子数から決定される1トラックあたりの角度分解能の改善を行う必 要がある。

2.2.3 エアロジェル RICH 検出器の構成

エアロジェル RICH 検出器は、輻射体であるシリカエアロジェルと位置分解能をもつ光検 出器、そして光検出器の全チャンネルからの信号処理が可能な front-end electronics の3要 素で構成される。以下にそれぞれに必要な性能を述べる。

シリカエアロジェル

シリカエアロゲルは体積の 90% 以上を空隙が占める透明な発泡スチロール状の外観を 持つ固体物質である。図 2.4 は実際のシリカエアロジェルの外観の写真、図 2.5 は構造 を示したものである。このように、シリカエアロジェルは粒子径が光の波長より充分 小さく、光の透過性に優れているという特徴を持つ。その構造は、SiO₂を主成分とし、 直径数 nm の 1 次粒子 (SiO₂)₂ が樹枝状に凝集して数十 nm の 2 次粒子を形成している。 更にこの 2 次粒子が集まり図 2.5 に見られるような形状となって,次元構造を成してい る。エアロジェルの密度は 0.0281 ~ 0.281[g/cm³] で固体の中でも最も軽い物質である。 さらに n=1.006 ~ 1.12 と、低屈折率から高屈折率まで可変である。表 2.1 に様々な物質 の屈折率を挙げる。表からわかるように、エアロジェルから要求されている輻射体の 屈折率 (n=1.05 程度)を通常の固体や気体で用意することが困難である。このため、広 い範囲で屈折率を変えることができるシリカエアロジェルは要求を満たす輻射体であ ると言える。

図 2.4: エアロジェルの写真

図 2.5: エアロジェルの構造

光検出器

光検出器にはエアロジェル RICH 検出器から以下のような性能が要求される。

高い量子効率

	物質	屈折率
	エアロジェル	$1.006 \sim 1.12$
個体	石英ガラス	1.47
	ポリエチレン	1.58
	水	1.33
液体	液体窒素	1.112
	液体ヘリウム	1.024
	二酸化炭素	1.000450
個体	イソブタン	1.001900
	空気	1.000292

表 2.1: 物質の屈折率

- 一光子検出能力
- 1.5T の磁場中での 5mm の位置分解能
- 広い有効面積
- 放射線耐性

1つ目の理由として、Cherenkov光が非常に微弱な光でありその光をノイズと区別でき る感度が必要とされる。5mm 位置分解能の理由として前述した通り、角度分解能の立 場から5mm 以下であることが望ましい。広い有効面積に関して、検出光子数が限られ ているということとも関連しているが、Cherenkovリングが再構成できるような、リ ングの欠ける箇所が可能な限り小さい必要があるためである。1.5T 磁場耐性という要 請は、Belle 検出器の説明の際に述べたとおり、超伝導ソレノイドによって Belle II 検 出器内には1.5T の磁場が常にかかっているためである。これは Belle II に導入される 光検出器の絶対条件であるが、一般的な光電子増倍管は磁場中で使用できないものが ほとんどである。放射線耐性に関して、半導体検出器は中性子や線といった放射線 に脆弱であることが知られている。Belle II エンドキャップで特に中性子によるダメー ジの影響が大きくなってくる。そのために、光検出器の中でも半導体光検出器に関し ては放射線耐性が必要となる。

Front-end electronics

マルチアノード構造に伴い多チャンネルからの信号を同時に処理するためには汎用の 回路系では対応できない。また、多チャンネルを同時に読み出せること、エンドキャッ プ部の設置空間の制約からコンパクトな読み出しシステムであることが要求される。さ らに HAPD は通常の光検出器に比べてゲインが低いので、低雑音・高利得な増幅が必 要である。ASIC も HAPD と並行して開発が進められている。

2.3 光検出器 HAPD とこれまでの開発経緯

エアロジェル RICH 検出器に要求される性能を満たす光検出器として Hybrid Avalanche Photo Detector(HAPD) を浜松ホトニクス社と共同開発を行っている。ここでは HAPD の構造や原理について説明を行う。

2.3.1 HAPDの増幅原理

HAPD は図に示すように真空管と半導体検出器 Avalanche Photo Detector)APD) を組み 合わせたハイブリッド構造となっている。HAPD で信号が得られるまでの過程を以下示す。

- 光子が光電面に入射し、光電効果によって光電子を放出する。
- ・ 光電面に印加された高電圧(最大印加電圧:8,500kV)によって光電子が加速され APD に 入射する。
- APD に入射した光電子はエネルギ を落として停止する。この時、エネルギーによって平均3.6eV 当たり1対の電子-正孔対を生成する。約1,500の電子-正孔対が生成され、これを打込みゲインと呼ぶ。
- APD内部で生成された電子-正孔対はAPDに印加された逆バイアス電圧によってそれ ぞれ逆向きに移動する。その過程でアバランシェ領域を通過した際に、(Si原子の価電 子帯から電子を励起させ、新たな電子"正孔対を生成していく。この時、1つの電子に よって生成される電子-正孔対の数をアバランシェゲインと呼ぶ。)

HAPD の特徴として高いエネルギー分解能がある。通常の光電子増倍管を考えた場合、光電 子は複数段にわたって設置されているダイノードに到達し2次電子の放出により5~6倍に 増幅され、最終的に10⁶~10⁷のゲインに到達する。1段での2電子の数が少ないので1光電 子に対して得られる信号の統計的揺らぎは大きくなってしまう。一方、HAPD は約1,500 と いう高い打込みゲインによって初段増幅の統計的揺らぎを通常の光電子増倍管によりも格段 に抑えることができる。このためエネルギー分解能が良く、高いS/Nで1光子検出が可能で ある。磁場耐性も HAPD の特徴である。光電面に印加される電圧が作る電場と磁場が並行 であれば、光電子が磁場から受ける影響がないので磁場中でも使用可能である。

2.3.2 APDの構造と原理

ここで APD の構造と原理について説明を行う。HAPD に使用している APD はシリコン で構成されてるシリコン APD である。典型的な APD の構造を図に示す。層構造は P+層、 P層、N層、N-層となっていて、P層とN層の間の接合面とその周辺に空乏層が広がってい る。さらに逆バイアス電圧を印加することで接合面附近に強い電場が形成されアバランシェ 増幅領域を形成する。

アバランシェ・フォトダイオード (APD) の動作機構を理解する上で基本となる物理過程 は、電荷キャリアの衝突電離によるなだれ増幅機構である。光電子が入射して励起した電子 あるいは正孔は電場に引かれてドリフト運動をして電極へと向かってゆく。これらの電荷キャ リアの大半は格子原子や不純物原子との衝突によってその運動エネルギーの失いながら運動 するので大きな運動エネルギーを得るには至らないが電場が十分強いと一部の電荷キャリア は衝突して価電帯 (伝導帯)に束縛されている電子 (正孔)を伝導帯 (価電帯)に励起させる のに十分なエネルギーを得ることができる。衝突電離で生成された 2 次の電子・正孔がさら に電場によって加速されてエネルギー・ギャップよりも大きな運動エネルギーを持てば次の 衝突電離を引き起こすことになる。このような衝突電離の連鎖反応がアバランシェ増幅 (雪 崩増幅)である。

図 2.6: APD の構造と電場配置

2.3.3 HAPDの仕様

これまでは HAPD の一般的な原理と構造について説明をしてきた。前述した HAPD の特 徴を活かし、浜松ホトニクス社と協力してエアロジェル RICH 検出器用マルチアノード型 HAPD の開発研究を行っている。表に仕様をを示す。このマルチアノード型 HAPD は位置検 出を可能にするために 6 × 6 に 36 分割された APD chip を配置し、合計で 144 channel の読み 出しを持っている。各ピクセルはエアロジェル RICH 検出器の性能を満たすために、4.9mm × 4.9mmのサイズとなっている。外形は 73mm × 73mmのセラミック容器を用いており、入 射窓は合成石英を使用している。入射窓にはバイアルカリ光電面が蒸着されており、現在は 現在はより高い量子効率を持つスーパーバイアルカリへの変更が進められている。有効面積 について、HAPDの大きさが 73mm × 73mm であり実際に光電子を検出できる APDの面積 が 4.9mm × 4.9mm × 144pixel となっているので、有効面積は 65% である。図 2.9~図 2.11 に HAPD のアバランシェ Gain と Gainno 打ち込み Gain の代表的な分布を示す。

図 2.7: HAPD の構造図

2.3.4 これまでの開発の経緯

Belle II 検出器に実装するエアロジェル RICH 検出器で使用することを目的とし、2002 年 よりマルチアノード型 HAPD の開発が行われてきた。ここに、これまでの開発研でに実証 された HAPD の性能についてまとめる。

一光子検出能力

HAPD は優れた一光子検出能力を有することが実証されている。波高分布を図 2.12 に示す。 図 reffig:1pe より、S/N は 10 以上を達成しており、ノイズに対して十分に分離して信号を読 み出すことが出来ている。

また、全 144Ch. で同様に高い S/N(~10 以上) で一光子検出が出来ており、また Gain につ いても全 144Ch. で約 6,5000 程度を得られている。1Chip(36Ch.) について Gain と S/N を評 価した結果図 2.13 を示す。

図 2.8: HAPD の実物写真

図 2.9: Chip の漏れ電流とアバランシェゲイン

磁場中での位置分解能

電磁石を用いた測定により、HAPD が 1.5T の磁場中において 5mm の位置分解能を持つこと が実証されている。[1] この結果を図 2.14 に示す。0T ではセラミック製の側管による磁場の 歪みによって、端の pixel で位置分解能が悪化が見られる。一方、1.5T の磁場中では 2mm の pixel 間隔も端の Ch. まで見えている。よって、Belle II 環境下レベルの磁場中でも 5mm の 位置分解能をもち、安定に動作することが確認された。

項目		仕様
大きさ		$73mm \times 73mm$
有効面積比		65%
入射窓	材質	合成石英
	厚み	4mm→3mm
光電面	材質	バイアルカリ → スーパーバイアルカリ
	ピーク QE	$\sim 25\% \rightarrow \sim 35\%$
	最大印加電圧	8,500V
打込みゲイン		~1700
APD	chip 数	2×2
	逆 bisa 電圧	$300 \sim 400 V$
	Avalanche ゲイン	\sim 50
	1pixel サイズ	$4.9mm \times 4.9mm$
	pixel 数/chip	6×6
トータルゲイン		$10^4 \sim 10^5$
読み出し数		144 channel

図 2.11: 144pixel HAPD の仕様

BelleII5年分の中性子耐性

Belle II 実装へ向けて一光子検出能力を有することや、磁場中での安定動作を検証してきたが、BelleII 実験は開始から 10 年間の運転を予定しているため、HAPD は BelleII 環境下で 10 年間の稼働を見込めなければならない。

そこで、中性子耐性を評価するために、BelleII5年間で放射されると予測される5×10¹¹(neutron/cm²) の中性子を原子炉を用いて照射する試験を行った。[1]中性子損傷による漏れ電流の増大に より、ノイズの増加につながると考えられるため、一光子検出能力の悪化が予測された。照 射後には、漏れ電流の増大とそれに伴うノイズの増大は確認されたが、Shaping timeの最適

図 2.12: **一光子検出能力**

図 2.13: 1ChipのGainとS/N

図 2.14: 1.5T の磁場中での測定

化により、十分なS/N(~7以上)で一光子検出が可能であることを示した。

2.3.5 本研究の目的

前節で述べた評価により、昨年度には HAPD をエアロジェル RICH 検出器の光検出器と して実装することが決定した。従って、BelleII 検出器に実装する際に、また加えて 10 年間 で稼働するにあたり課題を具体化し検証することが重要である。そこで、私は残された二つ の課題について検証を行った。

図 2.15: 照射量に対する漏れ電流の増加量

図 2.16: ASIC を用いた一光子信号とノイズ分布 緑はノイズ、赤は一光子信号成分を示す。

第一の課題は、面全体に亘り十分な量子効率をもつ HAPD の製作である。2011 年 6 月に HAPD の大量生産を予定しており、量子効率の一様性を評価することが重要であった。そこ で私は評価システムの構築により、これまでに製作されたサンプルについて面一様性を確認 した。また 2009 年 11 月には、『High QE 対策品』と呼ばれる量子効率 30% 以上をもつサン プルで、面一様性を確認し、初めて HighQE 対策品を用いてビームテストを行った。ビーム テストの結果から、HAPD の量子効率の向上に伴う検出光子数の向上、更には K/ 粒子識 別能力の向上への貢献についても議論する。

また、現在のエアロジェル RICH 検出器の性能を評価するために、短波長側での透過率が 向上したエアロジェルと HighQE 対策品を用いたビームテストでの検出光子数を 2008 年度 のビームテストの結果と比較して評価する。

第二の課題は、APD に対する放射線耐性である。

BelleII 実験の 10 年間で予想される放射線量に対する耐性を検証するために、中性子と 線の照射試験を行った。

中性子耐性は、これまでの研究によって BelleII 実験5年間分の中性子量 5×10^{11} (neutron/cm²) に対しては、十分な耐性をもつ。しかし、BelleII 実験が予定している稼働期間である 10 年間 分の中性子耐性は、まだ評価されていない。そこで、原子炉を用いた照射試験により HAPD の性能評価を行った。

また、一光子検出能力の悪化を招くノイズの増大は、半導体の厚さに依存すると予想する。 そこで厚さの異なる APD を用いた照射試験により、一光子検出能力の悪化を引き起こす漏 れ電流の増加量について APD の厚さの違いよってみられる変化を確認する。また、以上の 結果から 2010 年 6 月開始予定の大量生産で製作する HAPD の仕様の決定に貢献したい。

線耐性は、10数 krad から検出器再内層では 100krad 程度必要であると予測出来る。そこで初めての 線照射を行い、5,10,30krad の照射量に対して、表面電流の測定により引き起こされる現象を理解する。

第3章 量子効率の測定と評価

2008 年度に行われた電子ビームを用いたエアロジェル RICH 検出器のプロトタイプ試験 (本章の最後で詳細については述べる。)において、RICH の最高性能は S=4.2 を達成して いる。しかし、ビームテストとは異なる環境下である Belle II 実験に実装して使用するため には、更なる識別能力の向上を目指したい。識別能力の向上を目指す上で、(2.9) 式と(2.10) で表わされるように検出光子数が非常に重要な役割を果たす。検出光子数は [a]HAPD の量 子効率 (Quantum Efficiency :QE) と、[b] エアロジェルの透過率 に依存する。私は前者に焦 点をあて、HAPD の QE の測定と評価を行う。QE の評価は、QE の絶対値に加え、面一様性 も評価出来るシステムの構築を行った。これは 2010 年 6 月に開始する実機用 HAPD の大量 生産の検査システムとして十分に QE の評価が行えるシステムである。最後に HAPD の QE の向上に伴うエアロジェル RICH 検出器の性能の向上について、2009 年 11 月に実施したプ ロトタイプの試験の解析結果より述べる。

3.1 研究背景

今日に至るまでに、浜松ホトニクス社との共同開発によって 100 体以上の HAPD サンプ ルを製作している。HAPD の光電面には、バイアルカリ光電面を使用している。図 3.1 に発 生光子数と QE の波長依存性を示す。この図から分かるように、輻射体であるエアロゲルで 発生したチェレンコフ光を効率よく検出するためにバイアルカリ光電面を用いている。また 現在は、ピーク QE が 35% 前後の値をもつ SBA(スーパーバイアルカリ) 光電面を用いたサ ンプルの製作を進めており、QE の向上を目指す。

SBA 光電面をもつ HAPD の開発を進めると共に、2011 年 6 月からは Belle II 実験で使用す る実機用の HAPD の大量生産を開始する予定である。実機用としては約 500 体前後の HAPD を製作する。大量生産を行うにあたり HAPD の十分な性能評価を行うことが重要である。そ こで私は QE について QE の絶対値と面一様性の評価を行う。絶対値に加え、これまでに評 価がなされていない面一様性についても評価を行う理由は、実機で使用するためには 4.9mm 角の各ピクセル毎に十分な QE が必要であるという点と、大量生産用の検査システムとして 使用出来るシステムの構築を目的とすることの二点である。

以下に使用した HAPD と光電面のタイプを表??に示す。

光電面 (BA/SBA)	型番	使用目的
BA	SHP077	波長依存性、面一様性の評価
BA	SHP092	システムの構築用サンプル
BA	SHP110	Xe ランプを用いた測定
SBA	SHP118	Beam test 用サンプル (波長依存性、面一様性の評価)
SBA	SHP113	Beam test 用サンプル (波長依存性、面一様性の評価)
SBA	SHP117	Beam test 用サンプル (波長依存性、面一様性の評価)

表 3.1: 使用した HAPD の型番と使用目的

図 3.1:発生光子数とQEの波長依存性 厚さ 20[mm]、屈折率 1.05のエアロジェルを使用している。

3.2 測定装置の構築

3.2.1 測定方法とセットアップ

リファレンスに QE が分かっているフォトダイオード (PD) を用いて HAPD と PD に同量 の光を入射することで、式 (3.1) より QE を求めることが出来る。また入射する光の波長を 限定することで、入射光の各波長に対するQEを算出出来る。

$$QE_{HAPD}() = \frac{I_{HAPD}()}{I_{PD}()} \times QE_{PD}()$$
(3.1)

ここで、 QE_{HAPD} 、 QE_{PD} 、 I_{HAPD} 、 I_{PD} はそれぞれ

$$QE_{HAPD} : QE_{HAPD} : HAPD \mathcal{O} QE$$
(3.3)

- $QE_{PD} : PD \mathcal{O} QE \tag{3.4}$
- I_{HAPD} : HAPD の光電流値 (3.5)
 - *I_{PD}* : *PD* の光電流値 (3.6)

を表わす。

次に、QE 測定装置のセットアップを図 3.2 に示す。光源にはハロゲンランプを使用して いる。ハロゲンランプからの光をモノクロメータで分光してある波長の光のみを取り出し、 これを 1mm × 1mm サイズのスポットから HAPD(または PD) に入射する。HAPD と PD は、QE の面一様性を測定するために二次元方向の可動台に置いた。また HAPD は光電面 に-500V を印加し、APD 部分はすべてグランドにショートさせた。これにより、APD で増 幅される前の光電流値を読み出すことが出来る。光電流値は微小電流の測定が可能であるピ コアンメータを用いている。

測定点の間隔は 5mm に設定し、12 × 12=144 点で QE の測定を行う。測定で使用する機器とその性能は、それぞれ以下のようになっている。またリファレンスとして使用する PD の QE を図 3.3 に示す。

- ハロゲンランプ 「ハロゲンランプユニット AT-100HG(島津製作所)」
- ステージコントローラ「Mark-202(シグマ光機)」
- ピコアンメータ 「6487 PICOAMMETER(KEITHLEY)」 測定精度: 10fA
- モノクロメータ 「SGP-120S(島津製作所)」 波長分解能: 1.5nm
- 可動台 「SGSP46-300,SGSP26-100(シグマ光機)」位置決定精度:5 μ m
- フォトダイオード「SPD1337-1010BQX(浜松ホトニクス)」

図 3.2: QE 測定のセットアップ

図 3.3: PD の QE

図 3.4: 測定装置の写真

3.2.2 動作テスト

構築した装置を用いて HAPD の光電面のある位置に波長 400nm の光を入射して測定した 電流値を表 3.2 に示す。

この結果から構築したシステムを用いて QE は 24% と導出でき、これより予想される QE の絶対値を得ることが出来たと言える。¹次にスキャンによる QE 測定を行い、装置の動作確

¹浜松ホトニクス社の測定システムでは、HAPDの中心部分に40mm²の光を入射してQEを測定している。

認を行った。その結果、図 3.5 より HAPD の側管部分で QE はほぼ 0% であり、HAPD の輪 郭が確認できる。よって予想する QE 分布が確認できたので、更に装置の信用性を確かめる ために、電流値のふらつきの大きさと再現性について検証した。使用しているサンプルは、 SHP092 である。

SHP0092	電流値 [pA]
I _{HAPD}	224.9
$I_{\rm bak(\rm HAPD)}$	50.5
I_{PD}	726.5
$I_{back(\mathrm{PD})}$	-0.3

図 3.5: =400nm のときの QE 分布

† 電流値のふらつき

HAPD の光電流値と、PD の光電流値のふらつきの大きさを調べるため、波長 = 400[nm]において、ある一点でそれぞれの光電流値を400回測定した。その結果、HAPD の光電流値は、(259.39 ± 4.190) pA となり、また PD の光電流値は、(726.5 ± 0.8154) pA となった。これらの誤差を QE の値に伝搬すると、測定点での波長 400nm における 誤差は (15.2 ± 0.3) %である。測定値に対して誤差は 2.3% なので、電流値のふらつき には問題ないことが確認できた。

このとき浜ホトで測定された QE は、24.7% で、独立した別の方法を用いて同程度の QE が得られた。

† 再現性

測定装置に HAPD を取り付ける過程において、測定結果へ影響がないことを確認する ために、2回の測定データの差 Δ QE から変化量を求めた。全測定点 (144 点) の差を平 均すると Δ QE=0.18% となり、これは電流値のふらつきよりも小さい。よって、測定 系で取り外しをおこなっても、その影響は十分小さいと言える。

3.2.3 測定可能な波長領域

QEの2つの測定点での波長依存性を図3.6に示す。また、この時の電流値を図3.7と図3.8 に示す。短波長側で測定点A,Bにより値のばらつきが大きくなっている。これは短波長側で 光電流値と暗電流の差が少ないことが原因となり、測定値のふらつきのQEへの影響が大き くなっているためである。相対誤差5%以下の測定は、波長360nm以上で実現出来る。

検査システムとして使用する場合、全波長領域で必要な QE が得られているか確認する必要がある。そこで改善策として、短波長側での測定を行うためには、短波長側で十分な光量をもつ光源への変更が必要である。光源としては、キセノン (Xe) ランプを使用することで短波長側でも十分な測定が行えることを確認できた。今後は、Xe ランプを用いることで測定可能な波長領域が 260[nm] ~ 600[nm] に広げられることが分かった。(図 3.9 に Xe ランプを用いて QE 測定を行った結果を示す。)

図 3.6: =400nm のときの QE 分布

3.3 Uniformityの評価

QEの測定装置を用いて初めて量子効率の Uniformity を評価した。バイアルカリ光電面を 用いた HAPD(No. SHP077) について波長 360nm ~ 波長 580nm まで各波長における QE 測定 で得られた Uniformity を図 3.11 に示す。図 3.10 に示すように、測定範囲内でピーク QE を

図 3.8: PD の電流値

図 3.9: Xe ランプによる測定

もつ波長 =360nm で、面全体で QE は 18% 以上あり、十分な一様性が確認できる。バイア ルカリ光電面では十分な量子効率があることが確認できた。次に High QE 対策品を使った SBA 光電面の HAPD について十分な量子効率があるか確かめる。

図 3.10: SHP077 の =360nm のときの 144 点の QE 値

3.4 High QE対策品

これまで HAPD にはバイアルカリ光電面を使用してきた。バイアルカリ光電面を用いた 現在保有する 19 個の HAPD のピーク QE の平均値は、22% 程度である。

しかし先に述べたような理由から検出光子数を向上させるため、更なる QE 向上を目指し スーパーバイアルカリ光電面を使用した HAPD の製作を行った。スーパーバイアルカリ光 電面を用いた HAPD について、面全体で十分な QE が値が得られているか評価する。

"High QE 対策品"であるスーパーバイアルカリ光電面を用いた3つのサンプルについて測定を行った。3つのサンプルの波長依存性を図3.12に示す。以前測定された全てのHAPD(19個)の平均値と新しい"High QE 対策品"の平均値を波長400nmにおいて比較すると、7.2%の向上が確認できた。また初めて Peak QE が30%を超えるサンプルを得ることが出来た。しかし大量に生産する際に、"High QE 対策品"として常に QE が30%を超えるサンプルを 安定して製作出来るところにはまだ到達していない。

図 3.11: SHP077 の波長毎の面一様性 5mm 間隔で 15 × 15 点測定した。各軸で 1point=5mm である。

次に、Uniformity について議論する。HAPD(No. SHP117) について波長 360nm ~ 波長 580nm まで各波長における QE 測定で得られた Uniformity を図 3.14 に示す。波長 360nm の ときの QE のヒストグラムを図 3.13 に表わす。これは二次元分布の一番外側の point(HAPD

図 3.12: High QE 対策品の QE の波長依存性

のない領域)と外側から二番目の point(HAPD の設置位置により、側管部分を含む)を除いた 144 点で評価している。この結果から、面全体に亘り十分な一様性があることが確認できる。

図 3.13: High QE 対策品の 360nm のときの QE 分布

図 3.14: SHP117 の波長毎の面一様性 5mm 間隔で 15 × 15 点測定した。各軸で 1point=5mm である。

3.5 エアロジェル RICH 検出器のプロトタイプ試験

前節で評価を行った High QE 対策品である3つの HAPD サンプルを用いて、エアロジェ ル RICH 検出器のビームを用いたプロトタイプ試験を行った。ここでは、前節で高い量子効 率をもつことと、十分な一様性があることを検証した HAPD を用いることで、検出光子数 や K/ 識別能力といったエアロジェル RICH 検出器の性能が2008 年度のビームテストの結 果と比較してどの程度向上するか実証した。

3.5.1 セットアップ

ビームテストは、2009年11月にKEKの富士ビームラインを用いて行った。セットアップ を図 3.15 に示す。

図 3.15: プロトタイプ試験のセットアップ

図 3.15 を用いて、セットアップの詳細について説明する。エアロジェル RICH 検出器は暗 箱内に設置し、HAPD は上段に 3 体、下段 3 体と計 6 を使用しており、ASIC(SA01) を用い て読み出しを行っている。図の左側より 2[GeV/c] の電子ビームが入射すると、HAPD の配 置のほぼ中心部分を通りチェレンコフ光を放射する。暗箱の前後に置かれた検出器によって、 必要なイベントのみを捉え、またビームの入射位置を正確に把握する。まず、ビームに対し て最上流と最下流に置かれたシンチレーションカウンター (SC) によって、両者にトラック がある場合にのみイベントとして捉える、トリガーの役割を果たしている。次に、暗箱のす ぐ外側に取り付けられている MWPC(Multi Wire Proportional Chamber) によって、トラッ クの位置を記録する。

図 3.16: プロトタイプ試験のシステムの写真

測定条件は、2008年度に行ったプロトタイプの結果と比較するため、使用するエアロジェ ルと印加する HV,HAPD からエアロゲルまでの距離は 2008年度と同じ条件になるように設 定した。

- エアロジェル (index=1.0455, thickness 19.6mm),
- HV : -7kV
- エアロジェルと HAPD 間の距離: 200mm

HAPDの配置は、本実験においては 1cm 間隔で整列に配置している。(図 3.15 参照。) High QE 対策品サンプルは三体のみであるため、図のように下段に 3 つ並べて配置した。また、比較する 2008 年度の HAPD の配置は図のようになっている。

3.5.2 測定結果

Track の入射位置のふらつき等が検出光子数に与える影響をカットするため、Track の入 射位置を限定し各 HAPD ごとの検出光子数を算出する。同じ位置に設置した HAPD 同士で 検出光子数の比較を行った。また、各 HAPD に入射するリング(円周)上の長さと、HAPD の QE を用いて、各 HAPD 毎の検出光子数を見積もった。結果を図 3.19 に示す。リングイ

図 3.17: 2008 年度の配置と QE と QE(=400[nm])

図 3.18: 今回の HAPD の配置と QE(=400[nm])

N	2008			2009						
0.	QE(%)	リングイ メージに対 する割合	Photon /track	QE(%)	リングイ メージに対 する割合	Photon /track	Photon /track (予想値)			
1	15.0	0.06	0.32	15.0	0.076	0.49	0.41			
2	23.8	0.167	1.94	22.3	0.158	1.85	1.73			
3	25.0	0.052	0.52	25.0	0.054	0.56	0.58			
4	17.5	0.054	0.47	21.2	0.062	0.50	0.65			
5	22.3	0.167	1.76	30.0	0.164	2.27	2.32			
6	23.0	0.045	0.45	27.4	0.040	0.46	0.47			

図 3.19: 各 HAPD 毎の QE と検出光子数

メージに対する割合は、中心に設置された2つの HAPD(No.2,No.5) が高い値を示している。 各 HAPD について、予想される理論値と近い値が得られた。入射した光子数が多い HAPD No.5 について議論する。表 3.3 より、今回"High QE 対策品"を設置した No.5 の HAPD に ついて、QE の増加量 34.5% に対して、同様に検出光子数 28.9% の増加が確認できた。

	2008	2009	
QE	22.3	30.0	+34.5
検出光子数	1.76	2.27	+28.9%
BG/track	0.36	0.19	
resolution	11mrad	10.9mrad	

表 3.3: HAPD No.5 の検出光子数

また、今回の結果では全 6 体の HAPD の検出光子数は、2008 年度の 4.7[photon/track] に 対して、今回は 5.6[photon/track] に増加しており、20% の向上が見られた。今回のチェレン コフ角度分布を図 3.20 に示す。更に、全 HAPD で QE30% のサンプルが得られた場合、検出 光子数は 7.67[photon/track] まで増加することが予測され、1.6 倍の検出光子数が得られる。

図 3.20: リングイメージとチェレンコフ角度分布

第4章 HAPDの放射線耐性の評価

Belle II 実験は 2014 年開始から、10 年間の稼働を予定している。Belle II 検出器の前方エンドキャップ部分で使用するエアロジェル RICH 検出器は、厳しい放射線環境下に置くことになる。従って Belle II 実験で使用するためには、前章で述べた High QE かつ一様性をもつHAPD の製作を行うと共に、十分な放射線耐性をもつことを実証出来なければならない。

HAPDには半導体である APD を用いているため、放射線による性能の悪化が予想される。 そこで APD がどの程度の放射線耐性を有するかを評価するために、Belle II 実験で予測される 10 年間分の中性子と線を照射する試験を行った。表 4.1 に、今回の放射線照射試験の内容と目的を示す。

	放射線源(実験施設)	照射対象	主な目的
中性子照射	平均エネルギー	厚さの異なる APD	APD の仕様
	0.8~1.5[MeV]の中性子	通常,P 厚,P 薄,N 厚	(P 層の厚さ)の決定
	(東京大学所有)	N 薄,N 薄 P 厚	1. 漏れ電流の増加量
	原子炉 『弥生』	N薄P薄	2. ノイズの増加量の評価
		通常 HAPD	BelleII 10 年分の耐性評価
		P 薄 HAPD	1.,2.,3.Single photon 応答
		N 厚 HAPD	
線照射	$^{60}\mathrm{Co}$	144Ch. APD	損傷による影響を検証
	(名古屋大学所有)	(Gain 改良型: P+薄型)	1.,2.,4.Gain の変化
	^{『60} Co 照射室』		

表 4.1: 放射線テストの内容と目的

4.1 中性子照射試験

4.1.1 Belle 環境下で必要な中性子耐性

Belle 検出器周辺の中性子は、電子・陽電子の衝突で生じた radiative bhabha 散乱 ($e^+ + e^$ $e^+ + e^-$) によって放出された 線に起因する。放出された 線が検出器外部にあるビー ムパイプや磁石に衝突して中性子を発生させ、これが前方エンドキャップ部分まで飛来する と考えられる。(図 4.1 参照。) 飛来する中性子には、高速中性子と呼ばれる 0.1[MeV] 以上の 高いエネルギーをもつ中性子も含まれている。

またその放射線量は、Belle 実験稼働時では一年間で1×10¹⁰(neutron/cm²)と見積もって いる。見積もりは、前方エンドキャップ部分に取り付けた PD(図 4.2)の漏れ電流の増加量に 対して、原子炉で中性子を照射したときの PD の漏れ電流の増加量をリファレンスとして用 いている。両者の漏れ電流の増加量が一致した時の原子炉の積算線量を前方エンドキャップ 部分の中性子線量とした。(図 4.3 参照。)

これより、ルミノシティーを増強した BelleII 実験における中性子の放射線量は、一年間 で 1×10^{11} (neutron/cm²) 程度と予測出来る。よって、BelleII 10 年間の稼働時に HAPD に 必要な放射線耐性は 1×10^{12} (neutron/cm²) である。

図 4.1: 中性子発生のメカニズム

図 4.2: 中性子量の見積もり方法

Horizontal diodes	H1	H2	НЗ
Dose (10ºn/cm ²)	1.53	3.21	8.31
Vertical diodes	V1	V2	V3
Dose (10ºn/cm ²)	9.18	2.52	7.35

図 4.3: 中性子量の見積もり結果

4.2 半導体に与える影響

放射線が半導体に与える影響は、[a] 劣化量が積算線量に依存する効果 と、[b] 高エネル ギー粒子の単発的な事象によって引き起こされるシングルイベント効果 (SEE) の二種類があ る。中性子による影響は、[a] についてのみ考えれば良い。¹

積算線量による効果は中性子の場合、非電離的エネルギーによるもの(Non Inonising Loss) が考えられる。入射する中性子のエネルギーが十分大きいとき、結晶を構成する原子が弾き 飛ばされて格子間に欠陥が生じる。このような格子欠損をバルク損傷と呼び、バルク損傷は 非電離的相互作用により生じる。

また、弾き飛ばされた原子が格子点ではない部分に入り込み、空孔と格子間原子が対を作 りだすことによって欠陥(フレンケル欠陥)が作られる。(図4.4参照。)フレンケル欠陥の多 くは、短時間で空孔と格子間原子が再結合を起こすことで消滅するが、一部は安定な欠陥と なり半導体のバンドキャップ中に新しいエネルギー準位を生成する。(図4.5参照。)この結 果、熱励起される電子が増加し、漏れ電流が増加する。漏れ電流の増加はノイズの増大につ ながり、一光子検出能力の悪化を引き起こす。HAPDの性能の悪化を引き起こす原因となる ノイズの増大についてより定量的な理解を以下に述べる。

伝導帯 欠陥準位 価電子帯

図 4.4: フレンケル欠陥の模式図 (a) 格子間侵入原子 (b) 格子欠如 図 4.5: 中性子損傷によるバンド構造の変化

HAPDの信号の処理回路で生じるノイズは、主に熱雑音とショットノイズの二種類のノイズが考えられる。熱雑音 thernal は電子の熱運動に依り生じる電流が起因となり抵抗で生じ

¹これまでの HAPD の中性子照射試験によって、照射量に対して中性子損傷により増加する漏れ電流の量が 比例することが分かっている。よって中性子が HAPD に与える影響は、劣化量が積算線量に依存する効果の みを考えれば良い。

るノイズである。熱雑音はキャリアの熱運動による速度の揺らぎを表わすのに対して、ショットノイズ _{shot} はキャリアの数の揺らぎに起因するものである。これらを合わせてトータル ノイズ _{total} として (4.1) で表わす。

$$_{total} = \sqrt{\begin{array}{c}2\\shotl} + \begin{array}{c}2\\thermal\end{array}}$$
(4.1)

また、 thernal と shot はそれぞれ

$$_{shot} = \sqrt{(I_{ds} + I_{db}MF) / q} \tag{4.2}$$

$$thermal \simeq \sqrt{\frac{A^2 C_{det}^2}{}} \tag{4.3}$$

このように表わすことが出来る。(4.2) 式で用いた I_{ds} は表面電流 (the dark surface current) を表わし、 I_{db} はバルク電流 (the dark bulk current) を表わす。また、M はアバランシェゲイ ン、F はアバランシェゲインの揺らぎを表わすノイズ因子であり、HAPD の場合 F~2 とな る。 は shaping time、q は素電荷である。(4.3) 式における A は増幅器雑音の検出器容量か ら決まるノイズ量を表わし、また C_{det} はここでは APD1Ch. あたりの検出器容量を表わす。

中性子のバルク損傷が引き起こすノイズ増大の原因は、空乏層中の電子が熱励起されることにより流れるバルク電流 *I*_{db} が支配的である。従って、中性子を照射したあとのノイズは (4.2) 式を次のように書き換えることが出来る。

$$_{total} \simeq \sqrt{I_{db}MF / q} \tag{4.4}$$

(4.4) 式を用いて算出した理論値と、中性子を照射後に測定したノイズの値はよく一致している。従って中性子損傷によるノイズの増大は、漏れ電流の増加に伴う効果として十分に理解 出来ている。

4.2.1 APDの改良

BelleII 5 年分に相当する中性子線量 5 × 10^{11} (neutron/cm²) を照射後も、HAPD は目標値 である S/N ~ 7 以上の精度で一光子検出が可能である。しかしこの結果は最高精度で検出す るために、印加電圧を最大に設定し、かつ shaping time を最適化することで得られた結果で ある。

従って、BelleII 10年分の中性子線量である 1 × 10¹²(neutron/cm²)に対しては、S/N~5 まで低下することが予測出来、そのため一光子検出能力の悪化を防ぐ改善策が必要であった。 そこで私は APD の構造の改良を考案し、改良に伴うノイズの低減を予測した。予測に基づ いて耐性試験を原子炉を用いて行い、BelleII 10年分の中性子線量に耐性をもつ APD の開発 を進める。 APD の改良方法

図 4.6 に HAPD の APD 部分の構造 (断面図) を示す。先に述べたように一光子検出能力の 悪化は漏れ電流の増加に起因するため、漏れ電流を抑えることが性能の悪化を最も効果的に 防ぐことが出来ると考えられる。漏れ電流は格子欠陥ができれば出来るほど増加する。つま り格子欠陥の総数に漏れ電流の増加量は比例する。また、格子欠陥の総数は APD の厚さに 依存すると考えられる。従って、APD の厚みを薄くすることで漏れ電流の増大は防ぐこと が出来ると予測した。更に、厚さの違いによる効果は特に P 層の厚さの違いに大きく関係す ると予想する。これは空乏層における増幅過程のうち、P 層で発生した電子による増幅が N 層で発生した正孔による増幅より 100 倍程影響が大きいためである。

図 4.6: HAPD の APD 部分の構造 (厚さは現常の HAPD に使用している APD の値を表記。)

厚さの異なる APD を用いた照射試験

現在 HAPD に使用している APD は、全体の厚みが 40[µm] 程度あり、増幅領域である P 層と N 層の厚みは約 10[µm] と見積もっている。[1] これに対して P 層と N 層の厚さを厚薄 した APD を用意し、漏れ電流の厚さに対する依存性を検証するための照射試験を 2010 年 1 月と 6 月に実施した。

使用する APD は 1Ch. のみのサンプルであり、またサンプル毎に有効面積が異なるため、 単位面積あたりに換算して評価する。

No.	Туре	Size(mm)	capacitance [pF]	neutron/cm ²
5260				3×10^{11}
5263	current	Ф5	55	5×10^{11}
5280		(19.63mm²)		1012
5264		_		3 × 10 ¹¹
5265	Thick N	$\Box 5.6$	55	5×10^{11}
5266		(51.5011117)		1012
5249		Φ5 (19.63mm ²)		3 × 10 ¹¹
5250	thin N		330	5×10^{11}
5252		(10:00000000)		1012
5254				3×10^{11}
5255	thin N, thick P	Φ5 (19.63mm ²)	83	5×10^{11}
5256		(19:09:00:00:00)		1012
5276				3×10^{11}
5277	Thin P	0.5×1	20	5×10^{11}
5278				1012

図 4.7:1月のサンプルと照射量

No.	Туре	Size(mm)	capacitance [pF]	neutron/cm ²
5286				5×10^{11}
5288	thin N	$\Phi 5$ (19.63mm ²)	330	1012
5289		(10:0011111)		1012
5257		Ф5	0.2	1012
5258	thin N, thick P	(19.63mm²)	83	1012
5740	thin N thin D		4.4	5×10^{11}
5741	thin N, thin P	(1mm²)	44	1012

図 4.8:6月のサンプルと照射量

中性子照射試験は、東京大学が茨城県東海村に所有する原子炉『弥生』を使用した。弥生の主要性能を表 4.2 にまとめる。また図 4.9 に原子炉『弥生』の外観と、図 4.10 に弥生の中性子スペクトルを示す。

照射した中性子線量は、3×10¹¹(neutron/cm²)、5×10¹¹(neutron/cm²)、1×10¹²(neutron/cm²) である。また、出力は2×10⁸[neutron/cm²s] を500 W で照射した。中性子耐性の評価は、 以下の項目について測定を行い評価した。測定は全て室温で行っている。測定に用いたサン プルとそれぞれの照射量は表 4.7 と表 4.8 に示す。また、照射時のセットアップを図 4.11 に

熱出力	2kW
中性子束	$8 \times 10^{11} \text{ neutron/cm}^2 \text{sec}$
中性子平均エネルギー	$0.8 \sim 1.5 \text{ MeV}$
冷却方式	強制空冷

表 4.2: 主要性能

ガンマ線や熱中性子の混入のほとんどない環境で、0.1[MeV] 以上の高いエネルギーをもつ高 速中性子を利用できる。

図 4.9: 原子炉『弥生』

示す。

- 漏れ電流 (照射前/照射直後/照射後15日後)
- ノイズの波高分布 (照射前/照射後 15 日後)

また上記の測定は全て室温で行っている。次に照射結果を示す。

図 4.10: 弥生の中性子スペクトル

4.2.2 厚さの異なる APD を用いた照射試験結果

照射量毎に単位面積あたりの漏れ電流の増加量とノイズの増加量について評価した結果を 図 4.12~図 4.17 にまとめる。

照射量 3×10^{11} (neutron/cm²)

BelleII 実験3年間分の中性子量に相当する3×10¹¹(neutron/cm²)を照射後の漏れ電流の増加量は、P層を厚くしたサンプルが他のタイプのサンプルに比べて大きいことが分かる。これは漏れ電流の増加量は、P層の厚さに依存するという予測に一致した結果である。

照射量 5 × 10^{11} (neutron/cm²)

3 × 10¹¹(neutron/cm²) を照射した結果に反して、P 層を薄くした 2 つのサンプルのう ちー方 (5740) は、P 厚と同量の漏れ電流の増加量とノイズの増加量であることが分かっ た。また、N 層を厚くしたサンプル、通常のサンプルは同程度のノイズ量になっている。

照射量 1×10^{12} (neutron/cm²)

1月に照射したサンプルと6月に照射したサンプルは同様の結果が得られており、また サンプルのタイプによって漏れ電流の増加量、ノイズの増加量共に傾向が顕著に表れ た。P層を薄くしたサンプルが漏れ電流の増加量、ノイズの増加量共に少ない。また、 5×10¹¹(neutron/cm²)を照射した結果と同様に、N層を薄くしたサンプルはP層を薄 くしたサンプルに次いでノイズの増加量が少ないことが確認できる。

図 4.12: 3 × 10¹¹(neutron/cm²) 照射後の漏れ 図 4.13: 3 × 10¹¹(neutron/cm²) 照射後のノイ 電流の増加量 ズの増加量

図 4.14: 5 × 10¹¹(neutron/cm²) 照射後の漏れ 図 4.15: 5 × 10¹¹(neutron/cm²) 照射後のノイ 電流の増加量 ズの増加量

図 4.16: 1 × 10¹²(neutron/cm²) 照射後の漏れ ^図 4.17: 1 × 10¹²(neutron/cm²) 照射後のノイ 軍流の増加量

以上より、P 層を薄くしたサンプルでは漏れ電流の増加を抑えられることが確認出来た。 表 4.3 に 1 × 10^{12} (neutron/cm²)を照射後の漏れ電流の増加量とノイズの増加量についてゲイン 40 のときの値を示す。これより通常の厚さのサンプルに比べて、P 層を薄くすることで、漏れ電流の増加量を 30%以上減らすことが出来る。ただし、5 × 10^{11} (neutron/cm²)照射後の P 薄サンプル (5740)の P 厚のような振る舞いについては理解できていない。従って、P 層を薄くした APD を用いたサンプルで追試験が必要であると言える。

また、今回の照射試験で用いたサンプルは1チャンネル読み出しの APD を用いたが、これまでに照射試験を行った HAPD のサンプルと今回照射した通常の厚さのサンプルの漏れ

Type	No.	漏れ電流の増加量	ノイズの増加量
		$[\mu A/mm^2]$	$[e/\sqrt{mm^2}]$
P厚	5288	0.1	3,800
P 薄	5741	0.01	1,200
通常	5280	0.03	2,700
N 厚	5266	0.03	$2,\!650$
N 薄	5252	0.03	1,750

表 4.3: 1 × 10¹²(neutron/cm²) 照射後のゲイン 40 のときの漏れ電流の増加量とノイズの増 加量

電流の増加量が一致しており、この結果を HAPD のノイズ量に換算して使用することが出 来る。照射量に対する漏れ電流の増加量を図 4.18 に示す。

図 4.18: 照射量に対する漏れ電流の増加量

HAPDのノイズ量の見積もり

漏れ電流の増加量がノイズの増加量に大きく依存している結果から分かるように、中性子 を照射した後のノイズはショットノイズが支配的であると言える。従って今回の結果で最も 中性子耐性をもつ P 薄サンプルと、次いで中性子耐性をもつ N 薄サンプルを HAPD で使用 する可能性が高い。そこでこれらのサンプルを用いた場合の HAPD のノイズ量の見積もり を行った。 HAPD の信号読み出しで発生するノイズは、(4.1) 式で求めることが出来る。(4.2) 式の _{shot} は、1 × 10¹²(neutron/cm²) 照射後のゲイン 40 におけるノイズ量を 1pixel あたり (4.9 × 4.9[mm²]) に換算して使用する。

(4.3) 式について、増幅器定数 A は読み出し回路に ASIC の SA02 を使用すると想定して $A=15[e^-/pF]$ となり、[4] APD1Ch. あたりの検出器容量 C_{det} は浜松ホトニクス社の予想値よ リ P 薄サンプルは 100[pF]、N 薄サンプルは 430[pF] となる。以上より、Shaping time を変 数として HAPD の信号読み出しで発生するノイズは次のように表わすことが出来る。

$$P \, \bar{p} \qquad Noise_P thin = (1,500)^2 / + (6,000)^2 \tag{4.5}$$

$$N \, \bar{\mathbf{y}} \qquad Noise_N thin = (6,500)^2 / + (8,600)^2 \tag{4.6}$$

また、Shaping time を変化させたときの HAPD の信号読み出しで発生するノイズは、図 4.19のように表わすことが出来る。この図から P 層を薄くしたサンプルがノイズの低減に最 も効果的であることが分かる。また、照射後のノイズの増加量の結果では N 層を薄くしたサ ンプルも効果的であると想定出来たが、検出器容量が大きいために _{thermal}の効果が支配的 になり、ノイズの低減は期待できないことが分かった。

よって中性子耐性を強化した APD として P 層を薄くしたサンプルを使用することに決め、 これを用いた HAPD の製作を行う。また、この中性子耐性を強化した HAPD に照射試験を 行い十分な一光子検出が可能であることを実証する。

図 4.19: Shaping time を変化させたときの HAPD のノイズ量の見積もり

4.3 改良 APD を用いた HAPD の中性子耐性

APD の照射試験結果より、P 薄 APD を用いた HAPD の製作を行う。これを用いて中性子 照射試験を行い、漏れ電流の増加量と共に、Single photon 応答を確認する。同様に通常の HAPD と N 厚 APD を用いた HAPD についても評価を行い、P 薄 APD を用いた HAPD を 使用することで、BelleII 10 年分に相当する中性子線量1 × 10¹² (neutron/cm²) に対して十分 な精度 (S/N ~ 7 以上) で一光子検出が出来ることを実証する。

4.3.1 P薄APDを用いた HAPD

中性子耐性対策品として、今回初めて P 層を薄くした APD を用いた HAPD の製作を行った。今回使用した P 薄 APD を用いた HAPD サンプルは一体のみであり、また使用出来る Chip は B と D の 2 つのみである。このサンプルについて表 4.4 に基本性能をまとめる。KA0003 の基本性能は、第二章で図 2.11 に示した通常の HAPD と同じであり、十分な基本性能をもっている。

No.	KA0003			
最大印加電圧	8,5000V			
使用電圧	B:270V(40), $D:253V(32)$			
最大ゲイン	B:14,000(80), $D:56,000(32)$			
検出器容量	$100 \mathrm{pF}$			
QE@400nm	22.3%			

表 4.4: P 薄 APD を用いた HAPD の基本性能 () 内の数値はアバランシェゲインの値を表わす。

中性子照射後の性能

照射量 1 × 10¹²(neutron/cm²) を照射した後の漏れ電流の増加量と Single Photon 応答に ついてこれまでの照射結果から予測する。図 4.16 より、P 薄 APD に 1 × 10¹²(neutron/cm²) を照射した後の漏れ電流の増加量は、ゲイン 40 のとき I=0.01[µ A/mm²] である。これよ り、KA0003 の照射後の漏れ電流の増加量は 1Chip あたり、 I=10[µ A/chip] 程度になると 予想出来る。このとき KA0003 は、目標値である S/N ~ 7 以上で一光子検出が出来ると予測 出来る。これは通常の厚さの APD を用いた HAPD の照射試験で、5 × 10¹¹(neutron/cm²) 照射後の漏れ電流の増加量は Gain 40 のときに 10[µ A/chip] 程度であり、このとき S/N は 7 を達成していることから予測出来る。

4.3.2 P 薄 APD を用いた HAPD の照射試験

中性子照射試験は 2010 年 11 月に、APD の照射試験と同様東京大学の原子炉『弥生』で 行った。原子炉の出力は 500W であり、80 分間で 1 × 10¹²(neutron/cm²) を照射した。照射 前後で以下の項目について測定を行い評価した。測定は全て室温で行っている。

- 漏れ電流
- Single photon 応答

まず、漏れ電流の増加量を Chip 毎に図 4.20 に示す。Gain 40 のときの漏れ電流の増加量は ChipB が I=14.0[µ A/chip]、ChipD は Gain 32 のとき I=9.9[µ A/chip] であった。よっ て Chip 間で個体差はあるが、おおよそ予想値 (10[µ A/chip]) 付近の値が得られている。

図 4.20: KA0003 の漏れ電流の増加量

次に、Single photon 応答の測定結果を図 4.21 と 4.22 に示す。

照射前の S/N は (ChipB)S/N=12、(ChipD)S/N=11 であったが、照射後には漏れ電流の増加に伴うノイズの増大により一光子検出能力は低下している。しかし、ChipB では S/N=7.1 となり目標値である S/N=7 を達成することが出来た。一方で ChipD では、S/N=6.3 まで低下しているが、これは照射前の S/N が ChipB に比べ低かったことが要因として考えられる。照射前後の S/N から低下率 ([照射前の S/N]/[照射後の S/N]) を求めると、ChipB=58.2%、ChipD=58.3% であり、ノイズの増大による性能の劣化レベルは同程度であることが分かる。

最後に、漏れ電流の増加量と S/N について、異なるタイプの APD を使用した HAPD の 照射結果と比較する。11 月の照射試験において、KA0003 と同様に 1 × 10¹²(neutron/cm²) を照射した N 層を厚くした APD を用いた HAPD[型番:KA0006] と比較を行う。KA0006 で 使用可能な Chip は A、C、D の 3Chip がありそれぞれについて、漏れ電流の増加量と Single

図 4.21: KA0003 ChipB Ch.22 Single photon 図 4.22: KA0003 ChipB Ch.22 Single photon 応答

photon 応答を測定した。漏れ電流の増加量を図 4.24 に示す。KA0006 は 3Chip が同程度の漏 れ電流の増加量を示す。KA0003 については、ChipB の方が ChipD よりも多くなっている。 漏れ電流の増加量と、波高分布の結果より得られた S/N と Gain について図??にまとめる。 図??より、照射前の HAPD の性能は、S/N とゲイン共に N 厚 HAPD の方が良いことが分か る。しかし中性子を照射後には、N 厚 HAPD の漏れ電流は P 薄 HAPD に比べ 1.6 倍程度ま で増えることから S/N の悪化が P 薄 HAPD よりも大きくなる。S/N の低下率は Chip 毎に それぞれ ChipA=50.4%、ChipC=46.2%、ChipD=45.% となり、照射前の半分以下の S/N ま で低下してしまうことが分かった。

以上より、現状の HAPD と比較すると P 薄 APD を用いた HAPD は APD 単体の照射結 果と同様に漏れ電流の増大を抑えることが出来、またそれに伴いノイズを低減させることで S/N の低下を防ぐことが出来ることが実証出来た。S/N は目標としている S/N=7 以上での 一光子検出も可能である。従って、APD の増幅領域の厚さを現状の 10[µ m] から半分程度 の厚さ (~5[µ m])まで薄くした APD を用いた HAPD に変えることで、BelleII 10 年間分の 中性子耐性をもつ HAPD を実現することができた。

Вето	re										
No. (Type)	s/n		Gain			l(漏れ電流)[μA/Chip]					
KA0003	I	3	D	В			D	В		D	
(P薄)	12.2		10.8	69,000		54,000		0.059	9	2.65	
KA0006	A	С	D	А	С		D	A	С	D	
(N厚)	12.1	13.2	13.5	52,000	68,00	00	61,000	0.164	0.138	0.113	

After	r										
No. (Type)	S/N		Gain			ΔI(漏れ電流の増加量) [μA/Chip]					
KA0003	E	3	D	B D		D	В			D	
(P薄)	7	.1	6.3	39,00	39,000 31,000		14.0		9.90	D(G:32)	
KA0006	А	С	D	А	C		D	А	(С	D
(N厚)	6.1	6.1	6.2	36,000	40,0	00	38,000	18.1	22	2.0	20.9

図 4.23: 異なる APD を用いた HAPD(KA0003 と KA0006) の比較

図 4.24: 漏れ電流の増加量の比較

図 4.25: N 厚 APD を用いた HAPD(ChipA) の 図 4.26: N 厚 APD を用いた HAPD(ChipC) の Single photon 応答 Single photon 応答

図 4.27: N厚 APD を用いた HAPD(ChipD)の Single photon 応答

4.4 線照射試験

4.4.1 BelleII 環境下で必要な 線耐性

Belle 実験稼働時に、ECL と SVD の Dock でそれぞれ 線量の見積もりを行っている。Belle 検出器に実装された ECL,SVD の設置場所は図 4.28 に示す。この結果から BelleII 10 年間稼 働時の HAPD に対する 線耐性を見積る。ECL で使用している CsI(Tl) の蓄積エネルギー

図 4.28: BelleII 環境下での 線量の見積もり

から、ECL 内部 (図 4.28) での 線の放射線量は (236 ± 21)rad と見積もっている。[6] これ は積分ルミノシティーが 766[fb⁻¹] のときの 線の放射線量である。よって、BelleII 実験の 積分ルミノシティーは 50[ab⁻¹] を予定しているため、 線の放射線量は 15[krad] 程度と見積 もることが出来る。またルミノシティーの増強による別の見積もり [7] から 線の放射線量 を換算すると、6[krad] 程度と見積もることが出来る。

更に、衝突点に近い SVD の Dock では Belle 実験での 線の放射線量が 360[rad] であるこ とから、Belle II 実験では 100[krad] ~ 250[krad] と見積もることが出来る。[8] 従って、エア ロジェル RICH 検出器に飛来する 線量は、数 krad ~ 衝突点に近い位置では数 100krad と幅 広い値で考える必要がある。

4.4.2 半導体に与える影響

線が半導体素子に与える影響について劣化量が積算線量に依存する効果を考えると、その効果は電離的エネルギーによるもの TID(Total Ionising Dose) が考えられる。TID(Total

Ionising Dose) は入射粒子の積算的な電離エネルギー損失を評価した量を表わし、放射線の 効果を吸収線量で測定して評価する。また吸収線量は、単位時間当たりに吸収される放射線 のエネルギーで定義して用いる。

具体的に 線損傷によって APD 内で引き起こされる現象と、それに伴う APD の性能に与える影響について記述する。

正電荷捕獲

線は主に酸化膜に影響を及ぼす。入射した 線によって酸化膜中の電子が弾き出され、電子と正孔のペアを生成する。このうち正孔は移動度が遅いため取り残され、これが酸化膜中の欠陥に捕獲されるとこれ以上移動しなくなる。このように正電荷捕獲が 生じた結果、電場に変化が生じ、印加電圧に対する照射後の Gain 低下が考えられる。

界面準位生成

シリコン基板と酸化膜(SiO₂)という異なる物質が接触している面(Si-SiO₂界面)に本 来ある準位とは異なる準位が生成されてしまう現象を界面準位生成と言う。またその 結果、励起される電子が増大し漏れ電流の増大につながると考えられる。更に増加し た漏れ電流によってノイズが増大し、一光子検出能力の悪化が予測出来る。

今回の 線照射試験は初めての試験であるため、予め 線損傷によって APD 内で引き起こされる現象を予測し、論理的かつ過去の実験から経験的に理解し、照射後のデータと照らし合わせることが非常に重要である。従って、上記した界面準位生成による漏れ電流の増加とノイズの増大について理解を深める。

[1] ノイズの評価

線損傷によりノイズの増大を引き起こす原因は、APD 表面の pn 接合部分をショートして 流れるような表面電流によるものが支配的であると考えられる。従って、 線を照射した後 のノイズは (4.1) 式を次のように書き換えることで求まる。

$$_{shot} = \sqrt{(I_{ds})/q} \tag{4.7}$$

中性子損傷により増大するバルク電流と比較すると、表面電流は増幅領域を通らないことが特徴的である。一光子検出能力をS/N~7を保つためには、1Ch.あたりのノイズは7,000[e] 程度以下でなければならない。式(4.7)で 線損傷により増大するノイズを表わすことが出 来ると仮定すると、1Ch.あたりの漏れ電流を31[µ A]に抑える必要がある。

[2-a] APD を用いた 線照射試験

HAPD に対する 線照射試験は初めてであるため、過去の文献より浜松ホトニクス社製の 5mm 角 APD を用いた 線照射試験の結果を参考にする。(表 4.5 に結果を示す。)[2]

使用している APD サンプルは、CMS のカロリーメータで使用されているものと同じタイ プのものであり、 線耐性を強化するために APD 部分には深さ 30 µ m の溝が V 字に掘ら れている。構造を図 4.29 に示す。また使用している酸化膜に Si₂N₄AR を使用している。その他酸化膜の厚さや面積、また酸化膜とシリコン基盤が接している面の面積については、本実験で使用するサンプルと違いはない。ただし、線耐性対策が施されているため、広島大で測定したサンプルの方が、漏れ電流の増大は少ないと予測できる。以下に測定条件と線の照射前後の漏れ電流の値を示す。

図 4.29: CMS で使用している APD の構造 [5]

- サンプル APD(5mm角) 浜松ホトニクス社製 S8664-55
 APD(10mm角) 浜松ホトニクス社製 S8664-1010 3261
- 線量 (距離、時間) ⁶⁰Co(60[cm],3870[sec])
- 放射線源の強度 71TBq
- 照射量 10krad
- 照射時 Bias は印加していない、常温

APD	Before(300[V])	After(300[V])
5mm 角	2.62[nA]	11.81[nA]
10mm 角	1.45[nA]	43.96[nA]

表 4.5: 広島大学の 線照射試験結果-照射前後の漏れ電流の変化-

[2-b] 照射方法

APD の照射方法として、Bias 電圧を印加しながら照射する方法と、Bias 電圧をかけずに照 射する方法がある。過去の APD の照射結果によると (図 4.30 に示す。)、この二通りの照射 方法の違いによって漏れ電流の増加量に非常に違いが見える。Bias 電圧を印加して照射した 結果は、Bias 電圧を印加せずに照射した結果より、一桁程度漏れ電流(主に表面電流と考え ている)が大きい。従って、照射時には二通りの照射方法で Bias の有無による漏れ電流の違 いを評価する。またアニーリングの効果が見られるか確認するため、照射直後から1日後/8 日後/15 日後と時間を置いて測定する。

Fig. 8. Increase of flatband voltage resp. oxide charge with ionizing dose; without bias during irradiation (a) and under bias during irradiation (b).

図 4.30: バイアスの有無による電流値の違い [3]

4.4.3 照射方法

2010年12月13日に、名古屋大学⁶⁰Co照射室で行った。図4.31のように台の中央にある筒の中に、地下から 線源である⁶⁰Coが上がってきて照射することができる。照射サンプルである APD は3つあり、全て筒から 20cm の位置に設置した。照射量はサンプル毎に、5krad、10krad、30kradを照射した。照射時間は、それぞれ 494[s],1015[s],3096[s] である。また、放射線量は 350[gy/hour] である。照射するサンプルの構造は図4.33 に示す。

4.4.4 照射するサンプル

4.4.5 測定項目

先に述べた 線損傷によって性能の悪化が懸念される以下の項目について、 線照射前後 で比較を行った。

図 4.31: ⁶⁰Co 照射室

図 4.33: APD の構造

1. 漏**れ**電流

前章で述べた界面順位生成による漏れ電流の増大を確認するため、照射前/照射中/照 射直後/照射後1日経過後/照射8日経過後/照射15日経過後で測定を行った。

2. Gain 前章で述べた正電荷捕獲による Gain の低下がみられるか確認するため、照射前後で比 較を行った。照射前の値は、浜松ホトニクスでの測定結果を使用した。

4.4.6 測定結果

Gain

Gainは、以下の方法で測定を行った。

サンプル	照射量	Chip	Bias なし	Monitor
		A		
5961	5	В		
		С	Dead	Dead
		D	Dead	Dead
5960	10	А		
		В		
		A		
5979	30	В		
		С		
		D		

表 4.6: サンプル一覧

- 1. APD には逆バイアス電圧を印加し、光電流と暗電流をそれぞれ測定する。光源には 波長 420nm の緑色 LED を用いて全面に照射した。
- Gain が1となるような低電圧のとき (Bias 電圧 10[V] とした)の光電流値に対して、
 印加する Bias 電圧に対応する電流の増加率から Gain を求めることが出来る。

線照射前後の Gain を図 4.34 に示す。各 APD の ChipA について、照射前後で測定を行い 比較した。照射前後で、印加している最大電圧が異なるのは、抵抗による電圧降下を考慮し た結果である。 線損傷による性能の劣化の問題の一つである Gain の低下は、3 つサンプル の結果からは見られなかった。従って、30krad までの放射線量においては、正電荷捕獲によ る電場の変化による影響は問題ないと結論づけられる。

ただし、5960番のサンプルについては、Gain が照射前に比べ上がっているように見える ことは無視できない。しかし論理的に考えると、Gain の増加を引き起こす理由は考えにく い。また、照射前や他のサンプル(5961、5979)と比較すると、Gain の曲線が異なっている。 線形的な増え方が見えるが、これは次に示す電流の増加の仕方が直線的に増えていることと 関係している可能性がある。

電流測定

照射中は各サンプルで1Chip ずつ電流のモニターを行った。また、各サンプル1Chip はバ イアス電圧を印加せずに照射した。これは図4.30にみられるように、バイアス電圧を印加し て照射した場合とバイアス電圧を印加せずに照射した場合で漏れ電流の値に違いがあること が予測出来たためである。

図 4.34: 照射前後の Gain の比較

線を照射中に測定した表面電流の測定結果を図 4.35 に示す。それぞれに照射前の Gain40 のときのバイアス電圧を印加して測定を行った。また、照射直後においても電流値が一定値 に安定するまで 30 分程度測定を続けた。

赤色の枠で囲んだ範囲が 線を照射しているときの漏れ電流である。照射中は、 線が APD のシリコン内部の格子に衝突し、電子・正孔対が生成されることが漏れ電流の増大を 引き起こす一因であると考えられる。一方で、照射をやめた直後から時間の経過と共に急激 に漏れ電流は減少するという傾向は、3つのサンプルにおいて共通である。しかし、漏れ電 流の安定値の照射量に対する依存性は見られなかった。従って、劣化量(漏れ電流の増加量) が蓄積線量に依存するという予測に反した結果となり、サンプルの個体差が見えていると考 えられる。

次に照射後1日経過後、8日経過後、15日経過後の電流を測定した結果を表わす。それぞれのAPDについて全4Chipを測定した。この結果はChip毎の結果であり、36ピクセルを 束ねた漏れ電流の結果を表わしている。図4.36からの図4.38x軸はChipに印加するバイア ス電圧を表わしており、Y軸は各バイアス電圧での漏れ電流を表わしている。

照射量の増加に伴い、漏れ電流が増加するという予測とは異なる結果になった。また、BiasOn/Offの違いによる漏れ電流の増加量の違いは今回の照射結果からは見られなかった。A,B よりも C,D の方が漏れ電流が多い。設置位置の違いによる放射線量の違いは数 % 程度であ ため、設置位置の違いによる影響は考えにくい。

5961ChipD、5960ChipB、5979ChipB,C,Dは、Gain が得られる 200[V] 付近から急激に漏

図 4.35: 照射中の表面電流

れ電流が増加している傾向がみられる。電流が線形的に増加していることから、ブレイクダウンが生じていると考えられる。しかし照射から15日経過後には、5979ChipCを除いて急激に漏れ電流が低下していることが確認できた。

図 4.36: 5krad 照射後の漏れ電流

図 4.37: 10krad 照射後の漏れ電流

図 4.38: 30krad 照射後の漏れ電流

図 4.39: 照射量に対する漏れ電流値

4.4.7 考察

本節の始めに述べた予測と得られた結果についてまとめる。

事象	予測	照射結果	考察/追試験
1	線による損傷は、主に	漏れ電流の増加は、放射	サンプルの個体差が見え
	吸収線量の積算的な効果	線量に依らない。	ている可能性がある。
	に依る。		Chip 単位から 36Ch. ぞれ
			ぞれの漏れ電流を測定す
			る必要がある。
2	線損傷によって、表面	漏れ電流の増加は確認で	漏れ電流の増大に伴うノ
	電流が増加する。	きた。	イズの増加は見られるか。
			ノイズの波高分布の測
			定が必要である。
3	正電荷捕獲によって、	照射量 30[krad] までにつ	
	Gain が低下する可能性	いては、正電荷捕獲によ	
	がある。	る Gain の低下は生じな	
		l 1.	
4	Bias ありとなしによって、	漏れ電流の増加量は、	
	漏れ電流の増加に大きく	Bias 電圧の有無による違	
	差がある。	いは見られなかった。	

表 4.7: 線損傷による劣化の予測と測定結果のまとめ

サンプル	照射量 [krad]	Chip	Bias[V]	照射前[A]	照射後1日経過[A]	Biasなし	Monitor
5961	5	А	320	2.03E-08	1.97E-05		0
	5	В	320	1.51E-08	8.57E-06	0	
	5	С	320(316)	3.69E-08	5.73E-05		
	5	D	320(260)	3.36E-08	1.08E-04		
5960	10	Α	320	1.29E-08	4.66E-05	0	
	10	В	320	1.71E-08	3.12E-05		0
5979	30	А	320	2.11E-08	1.63E-05		0
	30	В	320	1.77E-08	2.42E-05		
	30	С	200	1.33E-08	5.49E-05	0	
	30	D	320(257)	4.20E-08	1.08E-04		

図 4.40: 照射量に対する漏れ電流値のまとめ

追試験

|考察に基づき、事象1と事象2についてそれぞれ追試験を行った。

事象 1

線による損傷は、主に積算的な効果であると予測していた。しかし図 4.39 に示すよう に、照射量に対して漏れ電流の値は Chip によってばらついている。従って Chip 毎に測定し た漏れ電流の測定では、 線による損傷は主に積算的な効果であるということは確認出来な かった。

そこで Ch. 毎に測定を行い、36Ch. を束ねた Chip 毎の測定でみられた個体差の原因として Ch. 毎に漏れ電流値にばらつきがみられると予測した。5979 番の ChipA について、1Ch. ご とに全 36Ch. について漏れ電流を測定した。5979ChipA は、照射後の漏れ電流の測定でブレ イクダウンの傾向はみられなかった Chip である。また測定で使用した回路を図 4.41 に示す。

測定結果を図 4.42 に示す。[Chip/36] は、Chip 単位での測定値を 36(Ch.) で割った 1Ch. あたりの漏れ電流の平均値である。1Ch. あたりの漏れ電流は漏れ電流の平均値の付近だけではなく、予想したように大きくばらついている。よって、Chip 毎の漏れ電流値のばらつきはCh. 毎の漏れ電流値のばらつきが要因であることが分かった。

事象 2

線損傷により増加した漏れ電流に伴い、ノイズがどの程度増加するか検証する。照射前のノイズ量をASIC(SA01)を用いて測定した結果を図4.43に示す。印加するバイアス電圧は ゲインが40になるようにそれぞれ設定し、Shaping time は250[ns]に設定した。Ch.間でノ イズにばらつきはあるが、ほとんどのCh.で1500[e]~2000[e]程度に収まっている。

次に照射後のノイズ量を見積もる。先に述べたように 線損傷により増加した表面電流が 支配的となりノイズが増大する場合、(4.7)式が成り立つと考える。(4.7)式に基づき 1Ch. あ

図 4.41: Ch. 単位での漏れ電流の測定の回路図

図 4.42: Ch. 単位での漏れ電流の測定

図 4.43: 5979 全 144Chの 線照射前のノイズ量

たりのノイズ量を計算する。照射前のノイズは熱雑音によるノイズが支配的であると仮定することが出来るので、このとき (4.1) 式は (4.8) 式のようにして表わすことが出来る。

$$_{total(after)} = \sqrt{(I_{ds})/q + \frac{2}{total(after)}}$$
 (4.8)

5979ChipA-Ch.22について、事象1で測定したCh. あたりの漏れ電流値を用いて、漏れ電流 は I_{ds} =0.562[µA]となる。また図4.43より、Shaping time=250[ns]、 $_{total(before_{c}h22)}$ =1960[e] となる。よって、表面電流が支配的となってノイズが増加している場合の照射後のノイズ量 は、(4.8) 式より $_{total(after)}$ =2180[e]となり、一光子検出能力は十分な精度(S/N~7以上)を 保つことが出来ると予測出来る。

このような予測のもと、照射後のノイズ量を照射前と同様に ASIC を用いて測定した。その結果を図 4.44 に示す。照射後の Ch.22 のノイズ量は してお し、予測値と一致しない。また、S/N~7 以下となる 7000[e] 以上のノイズ量をもつ Ch. も全体の約 24% を占めている。

全 Ch. について照射後の漏れ電流と照射後のノイズ量をプロットした結果を図 4.45 に示 す。ノイズの増大した要因として、表面電流のみを考えると緑色の線で表わすことが出来る。 しかし表面電流のみではノイズの増加分を説明することは出来なかった。表面電流のみでは なくバルク電流を起因としたノイズを含めて考えると黄色の線で表わすことが出来、増加し たノイズの値に近くなることが分かった。このとき、(4.8)式は(4.9)式として表わすことが 出来る。

$$_{total(after)} = \sqrt{(I_{ds} + I_{db}MF) / q + \frac{2}{total(after)}}$$
(4.9)

最後に、Ch. 間の漏れ電流値とノイズのばらつきについて位置依存性を検証した。 線を 照射した後の漏れ電流、ノイズのCh. 間のばらつきをそれぞれ図 4.42 と図 4.46 に示す。こ れより漏れ電流、ノイズ共にCh. 間にばらつきがあることは明確であるが、更に位置依存性 を調べるため、5979 ChipA について 320[V] のとき漏れ電流が 1.3 × 10⁻⁷[A] 以上、またノイ ズ量が 2100[e] 以上のCh. をそれぞれマップ化して図 4.47 示す。この結果から電流とノイズ に相関関係は見られるが、位置依存性はないことが分かる。

図 4.44: 5979 全 144Chの 線照射後のノイズ量

図 4.45: 照射後の漏れ電流値に対するノイズ量

図 4.46: 各 Ch. 毎のバイアス電圧に対するノイズ量の変化

図 4.47: 照射後の漏れ電流とノイズ量の位置依存性

A36	A35	A34	A33	A32	A31
A30	A29	A28	A27	A26	A25
A24	A23	A22	A21	A20	A19
A18	A17	A16	A15	A14	A13
A12	A11	A10	A9	A8	A7
A6	A5	A4	A3	A2	A1

図 4.48: APD の ChipA の Ch. の配置図

第5章 まとめ

2014年より開始する BelleII 実験で稼働するエアロジェル RICH 検出器の光検出器 HAPD の研究開発を進めている。マルチアノード型の HAPD の開発は、2002年より開始し今年6 月に実機へ向けた HAPD 500 体前後を製作する。実機品の大量生産へ向け、私は最終的な HAPD の性能評価を行った。本論文ではエアロジェル RICH 検出器で使用するために HAPD に要求される性能のうち、残された二つの課題の評価結果をまとめたものである。

第一の課題は、面全体に亘り十分な量子効率をもつ HAPD の製作であり、これを検証す るために量子効率の評価システムの構築を行った。この評価システムは、ある限られた範 囲のみでの平均的な評価に留まらず、pixel 単位 (4.9mm × 4.9mm) で QE の評価が可能であ る。これは実機用 HAPD の検査システムを目指したものであり、相対誤差 5% 以内で波長 =360[nm] ~ =600[nm] の範囲で測定が可能である。

次に、スーパーバイアルカリ光電面を用いた『High QE 対策品』について高い量子効率を もつことと、面一様性を確認した。この量子効率 30%以上をもつ HAPD で初めてビームテ ストを行った。2008年度のビームテストの結果に対して、このサンプルの QE の向上に伴う 検出光子数の向上が確認できた。また3体の High QE 対策品のうち、ピーク QE が 30% を 超えるサンプルは1体のみであったが、全 HAPD が 30%以上の QE を有しているとしたと き、エアロジェル RICH 検出器の検出光子数は 1.6倍にまで増加する。

第二の課題は、HAPD に対する放射線耐性である。BelleII 実験の 10 年間で予想される放 射線量に対する耐性を検証するために、中性子と 線の照射試験を行った。中性子照射によ る一光子検出能力の悪化を招くノイズの増大は、漏れ電流に起因する。また、漏れ電流の増 大を防ぐためには、半導体の厚さに依存するとと予測した。これにに基づいて厚さの異な る APD を用いた照射試験を行った。その結果、アバランシェ領域における P 層を薄くする ことが効果的であると実証した。P 層の厚さを薄くした HAPD を製作し、中性子線量 1 × 10¹²(neutron/cm²)を照射後も十分な精度 S/N ~ 7 での一光子検出を確認した。

次に HAPD の 線耐は、今回が初めての評価になる。5[krad]、10[krad]、30[krad] の三種 類の照射量に対する漏れ電流の増加が見られた。またいくつかの Chip では電流が線形的に 増加しておりブレイクダウンが起こっていると考えられる。Ch. 単位の測定では、Ch. 間の照 射ごの漏れ電流にばらつきがあることが分かった。また、ノイズ分布の測定において、S/N ~7以下となってしまうノイズ量 7000[electron] を超える Ch. に関しては、漏れ電流の増大も 大きいことがわかる。 線に関しては、更なる追試験が重要にであり、照射量と漏れ電流の 増加量の関係性を明らかにしたい。

以上より、大量生産に向けた評価システムとして使用出来る精度で、QEの絶対値と面一 様性のを評価を行うシステムを構築した。また、中性子耐性試験により P層の薄さを現状の 半分程度の厚さにすることで、中性子線量 1 × 10¹²(neutron/cm²)を照射後も目標としてい る S/N ~ 7 以上で一光子検出が可能である。2014 年から BelleII 十年間の RICH の稼働へ向 け、 線耐性の評価を進めると共に予測されている 30[krad] 以上の 線量を照射する試験も 行う必要がある。

謝辞

本研究を進めるにあたり、多くの方々にご協力、ご指導を承りました。皆様に心より感謝 致します。特に名古屋大学大学院で二年間研究する機会を与えて下さった飯嶋徹教授をはじ め、N研の皆様に心から感謝致します。尊敬する飯嶋教授のもとで研究を進めることが出来、 数多くのことを学ぶことが出来ました。たくさんのアドバイスを頂き、また貴重な経験をた くさんさせて頂き本当にありがとうございました。原助教には実験の要所要所で的確なアド バイスを頂き、本論文の執筆に至ることが出来ました。二年間の研究生活において最初から 最後まで私に成長する機会を与えて下さったこと、心より感謝しています。N研の皆様には ミーティング等を通してたくさんのアドバイスを頂き、研究に対してより理解を深める機会 を頂きました。いつも快くアドバイスをくれた有田義宣さん、志知秀治さん、前島亮平さん、 若林潤さんと研究生活を共にすることが出来、大変恵まれていたと感じています。本当にあ りがとうございました。

また、BelleII エアロジェル RICH 検出器グループの共同研究者である、高エネルギー加速 器研究機構 (KEK) の足立一郎准教授、西田昌平助手には、KEK に滞在して研究を進めるに あたり多くのお力添えを頂きました。同グループの東邦大学の多賀井里枝さんと首都大学東 京の岩田修一さんには、測定を進めるにあたり、多くの場面で私の至らないところを助けて 頂きました。RICH グループの全ての皆様に、心より感謝しています。

最後に、学生生活を支えてくれた家族に感謝の念を抱きつつ、謝辞とさせていただきます。

参考文献

- [1] 椎塚 晋 名古屋大学大学院 理学研究科 修士論文 『エアロジェル RICH のためのマルチ アノード型 HAPD 光検出器の開発研究』
- [2] 浅野 哲也 広島大学理学部 物理科学科 卒業論文 『BGO と APD を用いた宇宙 線検 出器アクティブシールドの研究』
- [3] R.Wunstorf et al. NIM A377,290 (1996)
- [4] 黒田英諒 首都大学東京大学院理学研究科修士論文 『Belle II 実験の為の Aerogel RICH 検出器読み出し電子回路の開発』
- [5] D.Renker et al. NIM A486,164(2002)
- [6] K.Tamai et al. Belle Note 1137
- [7] BelleII Technical Design Report, arXiv:1011.0352
- [8] M.Friedl, presentation at 4th BelleII General Meeting