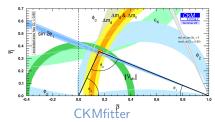
Precision Measurements of Weak Interaction Parameters

CKM and CP Violation at Belle and Belle II

Ansu Johnson on behalf of the Belle II Collaboration


BCVSPIN 2024 "Particle Physics and Cosmology in the Himalayas" December 9 - 13, 2024

CKM MATRIX & UNITARITY TRIANGLE

$$V_{CKM} = \left(egin{array}{c|c} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{th} \end{array}
ight)$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Overconstrain UT apex through diverse measurements
- goal: precise measurement of all UT angles and sides
- Test the Standard Model and probe BSM
 - Tree-dominated decays: Provide clean SM constraints
 - Loop-dominated decays:
 Sensitive to BSM contributions

ϕ_1	$(22.5^{+0.5}_{-0.4})^{\circ}$
ϕ_2	$\left(86.2^{+3.9}_{-3.5}\right)^{\circ}$
ϕ_3	$\left(65.9^{+3.3}_{-3.5}\right)^{\circ}$
$ V_{cb} $	$\left(41.6^{+0.2}_{-0.6}\right) \times 10^{-3}$
$ V_{ub} $	$(3.73^{+0.04}_{-0.05}) \times 10^{-3}$

CHARGE-PARITY VIOLATION (CPV)

$$V_{CKM} = \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ \lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(\rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$
 • Measured through interference between mixing and decay

DIRECT CPV

Originates from interference between two amplitudes

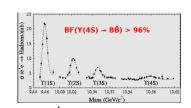
INDIRECT CPV

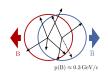
- Time-dependent CPV (TDCPV)

$$\begin{split} A_{CP}^{B\rightarrow f}(\Delta t) &\equiv \frac{\Gamma\left(B^0(\Delta t)\rightarrow f\right)-\Gamma\left(\bar{B}^0(\Delta t)\rightarrow f\right)}{\Gamma\left(B^0(\Delta t)\rightarrow f\right)+\Gamma\left(\bar{B}^0(\Delta t)\rightarrow f\right)} \\ &= \frac{S}{\cdot}\sin\left(\Delta m_d\Delta t\right)-C\cdot\cos\left(\Delta m_d\Delta t\right) \end{split}$$

$$S = |\sin(2\phi)| = Mixing induced CPV$$

 $C = Direct CPV$

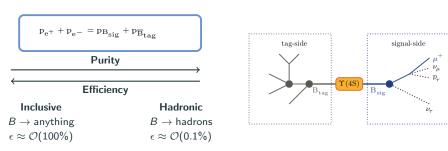



Angle	Relation	Measurement Channels	Tree/Loop	CPV Type
$\phi_2(lpha)$	$arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$	$B^0 o \pi\pi, B^0 o ho^+ ho^-$	Mixed (Tree/Loop)	TDCPV
$\phi_3(\gamma)$	$arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$	$B^+ o D^0 K^+$ with various D^0 decays	Tree-dominated	Direct

B PHYSICS AT BELLE II

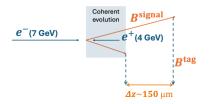
- e^+e^- collision at $\Upsilon(4S)$ [10.58 GeV]
 - Coherent production of $B\bar{B}$ pairs
 - Clean environment
- Dominant background: $e^+e^- o qar q$
- Spherical $B\bar{B}$ events can be discriminated from jet-like $q\bar{q}$
- Continuum suppression using Multivariate Analysis (MVA)
- Kinematic constraints: well-known beam energy
 - ΔE: Reconstructed B and beam energy difference
 - $M_{\rm bc}$: Beam constrained mass

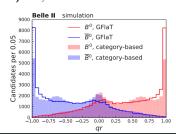
 $e^+e^- \to q\overline{q} \ (q \in \{u,d,s,c\})$

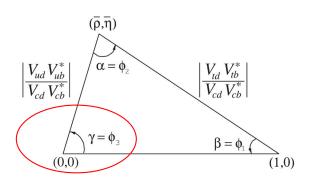


FULL EVENT INTERPRETATION (FEI)

- Essential tool for decays with missing kinematic information
 - eg: Decay involving neutrinos
- FEI algorithm reconstructs second B meson (B_{tag}) in ~ 10 k channels
- Infer kinematics of signal B using well known initial state of $\Upsilon(4S)$

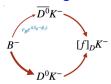

ComputingandSoftwareforBigScience(2019)


FLAVOR TAGGING


- Distinguish between B^0 and \bar{B}^0
- Signatures of flavor-specific decays grouped into 13 categories
- Quantum correlation allows identification of signal B flavor based on tag B
- $\epsilon = (31.68 \pm 0.45)\%$

Graph-neural-network flavor tagging (GFIaT) PhysRevD.110.012001

- Updated from category-based algorithm
- Improved performance by accounting for correlations between final-state particles
- $\epsilon = (37.40 \pm 0.43 \pm 0.36)\%$
 - 18% increase in efficiency



ANGLE $\phi_3(\gamma)$

ϕ_3 is the phase between b o u ar c s and b o c ar u s transitions

Accessible using $B \rightarrow DK$

$$\begin{array}{c} B^{-} \to D^{\theta} \ K^{-} \\ \hline \text{favored} & V^{*}_{us} \stackrel{\bar{u}}{\searrow} K^{-} \\ B^{-} & V_{cb} & D^{0} \end{array}$$

$$B \rightarrow \overline{D}^{0} K$$

$$b \qquad V_{ab} \qquad V_{cs}$$

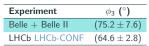
$$\overline{v} \qquad \overline{v} \qquad \overline{v}$$

$$\overline{v} \qquad \overline{v} \qquad \overline{v}$$

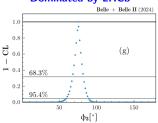
$$\overline{u} \qquad S \qquad K$$
suppressed

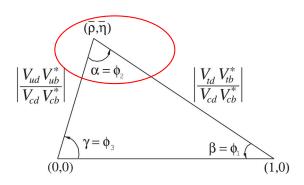
$$rac{A^{ ext{suppr.}}\left(B^-
ightarrowar{D}^0K^-
ight)}{A^{ ext{favor.}}\left(B^-
ightarrow D^0K^-
ight)}=r_{ ext{B}}\mathrm{e}^{i(\delta_{ ext{B}}-\phi_3)}$$

- Common final states give access to phase via interference
 - Tree level: No (large) BSM
 - SM benchmark

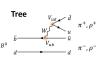

Method	Decay Mode
GLW	$D^0 o K^+ K^-, K_s^0 \pi^0$ (CP eigenstates)
BPGGSZ	Self-conjugate multi-body decay, e.g., $D^0 o K_s^0 h^+ h^-$
GLS	$D^0 o extit{K}^0_s extit{K}^\pm \pi^\mp$ (singly Cabibbo-suppressed decays)
ADS	$D^0 o K^\pm\pi^\mp$

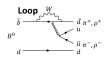
ϕ_3 : Belle + Belle II combination

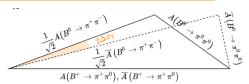

B decay	D decay	Method	Data set (Belle + Belle II)[fb ⁻¹]
$B^+ o Dh^+$	$D ightarrow K_{ m s}^0\pi^0, K^-K^+$	GLW	711 + 189 BelleII
$B^+ o Dh^+$	$D ightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ o Dh^+$	$D ightarrow K_{\rm s}^0 K^- \pi^+$	GLS	711 + 362 BelleII
$B^+ o Dh^+$	$D ightarrow K_{ m s}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128 BelleII
$B^+ o Dh^+$	$D ightarrow K_{\mathrm{s}}^{0} \pi^{-} \pi^{+} \pi^{0}$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$D^* \rightarrow D\pi^0, D \rightarrow K_{\rm s}^0\pi^0, K_{\rm s}^0\phi,$		
	$K_{\mathrm{s}}^{0}\omega,K^{-}K^{+},\pi^{-}\pi^{+}$	GLW	210 + 0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D\gamma, D \to K_{\rm s}^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0


- First combination of all Belle and Belle II φ₃ measurements
- 59 input observables and 18 free parameters
- Belle + Belle II is improving the precision!

JHEP10(2024)143

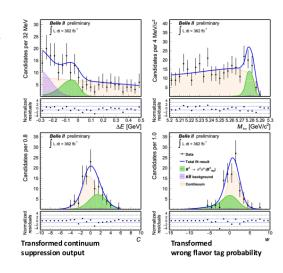



Dominated by LHCb


EXTRACTION OF ϕ_2 : ISOSPIN ANALYSIS

- TDCPV measurement
- $b \rightarrow u\bar{u}d$: sensitive to ϕ_2
- $b \rightarrow d$ loop contributions add an extra phase $\Delta \phi_2$
- Interference of tree and loop: $S = \sin(2\phi_2 + 2\Delta\phi_2), C \neq 0$

Key Observables:		
$\pi^+\pi^-, \rho^+\rho^-$	BF, <i>S</i> , <i>C</i>	
$\pi^{+}\pi^{0}, \rho^{+}\rho^{0}$	BF, A _{CP}	
$\pi^{0}\pi^{0}, \rho^{0}\rho^{0}$	BF, A_{CP} or C	
	S (only for $ ho^0 ho^0$)	

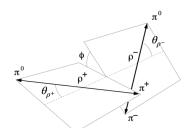

- Isospin symmetry allows for separating tree and penguin contributions
- Determining ϕ_2 from $B \to \pi\pi$ requires BFs and A_{CP} of $B^0 \to \pi^+\pi^-$. $B^+ \to \pi^+ \pi^0 \quad B^0 \to \pi^0 \pi^0$
- $\pi^{0}\pi^{0}$, $\rho^{+}\rho^{0}$, $\rho^{+}\rho^{-}$ requires π^{0} reconstruction:
 - Belle II has an advantage.
- $\rho\rho$ with smaller loop contribution dominates ϕ_2 precision

$\phi_2:B^0\to\pi^0\pi^0$

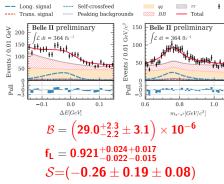
- Experimentally challenging: 4 photons and no tracks
- Updated measurements of BF and A_{CP} with full Run-1 statistics:
 - GFlat for flavor tagging
 - MVA dedicated for photon selections
- Fit to four variables

$BF \times 10^{-6}$		A _{CP}	
BelleII	$1.26 \pm 0.20 \pm 0.12$	$-0.06 \pm 0.30 \pm 0.05$	
WA	1.59 ± 0.26	0.30 ± 0.20	

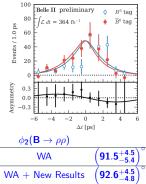
- World best BF
- A_{CP} comparable with WA
- Paper in preparation


$$\phi_2:B^0\to
ho^+
ho^-$$

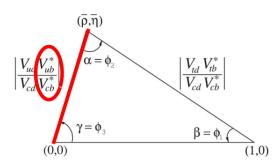
- Small contribution from loops: gives most stringent constraints on ϕ_2
- Reconstruction: $\rho \to \pi^+(\pi^0 \to \gamma\gamma)$
- MVA to identify real photons in π^0
- qq suppressed by TabNet (arxiv:1908.07442)
- Psuedoscalar → Vector Vector decay:


- The fraction of longitudinal polarization f_L determines the sensitivity of the CPV parameters
- f_L is extracted from the helicity angle $heta_
 ho$

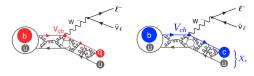
$$\mathit{f_L} = \frac{\mathcal{B}(\mathsf{Long.})}{\mathcal{B}(\mathsf{Long.}) + \mathcal{B}(\mathsf{Trans.})}$$

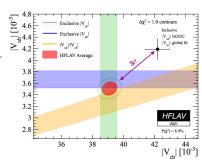


$\phi_2:B^0\to ho^+ ho^-$


- Improved precision by GFlat flavor-tagger and better selection criteria
- Fit to 6 observables to extract \mathcal{B} and f_L

$$\mathcal{C}{=}{-}0.02 \pm 0.12^{+0.06}_{-0.05}$$

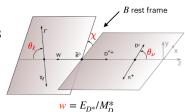



- Consistent with previous measurements
- Paper in preparation

DETERMINATION OF $|V_{ub}| \& |V_{cb}|$

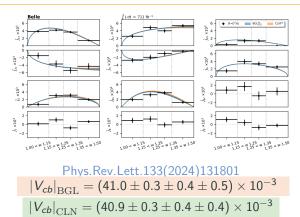
- $|V_{ub}|$ and $|V_{cb}|$ are important to constrain CKM unitarity
- Precisely measured via semileptonic B decays.
- Significant tension between inclusive & exclusive determinations

Exclusive $ V_{xb} $	Inclusive $ V_{xb} $	
Exclusive $ V_{ub} :\; ar{\mathcal{B}} ightarrow \pi \ell ar{ u}_\ell$	Inclusive $ V_{ub} :\; ar{B} o X_u \ell ar{ u}_\ell$	
Exclusive $ V_{cb} : \bar{B} \to D\ell\bar{\nu}_{\ell}, \bar{B} \to D^*\ell\bar{\nu}_{\ell}$	Inclusive $ V_{cb} :\; ar{B} o X_c\ellar{ u}_\ell$	
$\mathcal{B} \propto V_{qb} ^2 f^2$	$\mathcal{B} = V_{qb} ^2 \left[\Gamma(b \to q\ell \bar{\nu}_\ell) + \frac{1}{m_{c,b}} + \alpha_s + \ldots \right]$	
$f o Form \ Factors$	Heavy Quark Expansion	


$|V_{cb}|$ from $ar{B} o D^*\ellar{ u}_\ell$

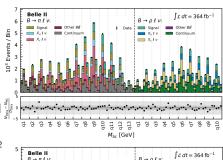
- $|V_{cb}|$ from angular analysis of $B \to D^* \ell \bar{\nu}_{\ell}$
- ullet Full Belle dataset (711 ${
 m fb^{-1}})$ with hadronic B tagging
- Reconstruct both charged and neutral B

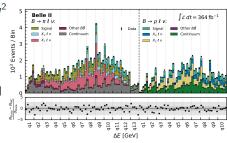
•
$$\bar{B}^0 \to D^{*+} \ell \bar{\nu}_{\ell}$$
, $D^{*+} \to D^0 \pi^+ / D^+ \pi^0$


expressed in terms of 12 functions

•
$$B^- o D^{*0} \ell ar{
u}_\ell$$
, $D^{*0} o D^0 \pi^0$

- ullet Four-dimensional differential decay rate for $ar{\mathcal{B}} o D^* \ell ar{
 u}_\ell$ can be
- Angular coefficients obtained from data in bins of the hadronic recoil parameter $\mathbf{w} = \frac{m_B^2 + m_{D^*}^2 q^2}{2m_B m_{D^*}}$
- Measure 12 angular coefficients J_i in four bins of w
- Determine signal yields by fitting the mass of undetected neutrinos in the event: $M_{\text{miss}}^2 = \left(p_{e^+} + p_{e^-} p_{B_{B_{tag}}} p_{D^*} p_{\ell} \right)^2$

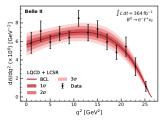

$|V_{cb}|$ from $\bar{B} o D^* \ell ar{ u}_\ell$

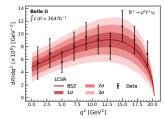


- Agrees with the latest and most precise determinations of inclusive $\left|V_{cb}\right|$
- Results in agreement with fits to 1D partial rates on the same data set PhysRevD.108.012002 as well as on Belle II data arXiv:2310.01170v2

$|V_{ub}|$ from $B^0 o\pi^-\ell^+ u_\ell$ & $B^+ o ho^0\ell^+ u_\ell$

- The rates of b o u decays is proportional to $|V_{ub}|$
- Full Belle II Run1 dataset of 364 fb-1, untagged
- Extract signal yields from fit to binned of the binned o
 - 2 kinematic variables in bins of q^2 simultaneously for $\pi\ell\nu$ and $\rho\ell\nu$
 - $q^2 = (P_B P_{\pi/\rho})^2$
- Background suppressed using BDTs
- Total branching ratio is the sum of all the partial ΔB_i in each q^2 bin





$|V_{ub}|$ from $B^0 o\pi^-\ell^+ u_\ell$ & $B^+ o ho^0\ell^+ u_\ell$

arxiv:2407.17403 [PRD]

$$\begin{array}{l} {\cal B}\left(B^0\to\pi^-\ell^+\nu_\ell\right) = (1.516\pm 0.042 (\ {\rm stat}\)\pm 0.059 (\ {\rm syst}\))\times 10^{-4} \\ {\cal B}\left(B^+\to\rho^0\ell^+\nu_\ell\right) = (1.625\pm 0.079 (\ {\rm stat}\)\pm 0.180 (\ {\rm syst}\))\times 10^{-4} \end{array} \ \, \begin{array}{l} {\mbox{Consistent with PDG}} \end{array}$$

$$\begin{split} B^0 \to \pi^- \ell^+ \nu_\ell : & |V_{ub}| = (3.73 \pm 0.07 (\text{stat}) \pm 0.07 (\text{syst}) \pm 0.16 (\text{theo})) \times 10^{-3} \text{ LQCD+LCSR constraints} \\ B^+ \to \rho^0 \ell^+ \nu_\ell : & |V_{ub}| = (3.19 \pm 0.12 (\text{stat}) \pm 0.17 (\text{syst}) \pm 0.26 (\text{theo})) \times 10^{-3} \text{ LCSR constraints} \end{split}$$

- Consistent with WA
- Comparable precision with Belle/Babar

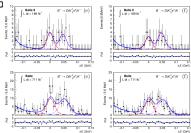
SUMMARY

- ullet Belle II has already recorded a total of 531 ${
 m fb^{-1}}$ of data
- Precise measurements of CKM angles and sides are crucial for increasing the constraining power of the Unitarity Triangle fit.
- The new GNN-based flavor tagger has achieved an 18% improvement in effective tagging efficiency
- ϕ_2 : $B \to \pi^0 \pi^0$, $B^0 \to \rho^+ \rho^-$
 - New results with improved precision, the first ϕ_2 extraction with improved precision
- ϕ_3 : First combined Belle and Belle II analysis, achieving improved sensitivity
- Belle and Belle II continue to produce updated and improved measurements of $|V_{cb}|$ and $|V_{ub}|$

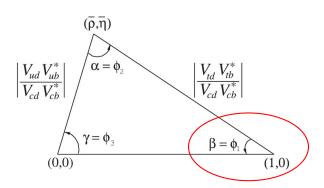
Thank You!

BACKUP

$\phi_3:B^\pm\to D_{CP}K^\pm$ in Belle + Belle II Data


Observables: Direct CPV in \mathcal{B} Ratio

- $\begin{array}{l} \mathcal{A}_{CP\pm} \equiv \\ \mathcal{B}(B^- \to D_{CP\pm} K^-) \mathcal{B}(B^+ \to D_{CP\pm} K^+) \\ \overline{\mathcal{B}(B^- \to D_{CP\pm} K^-) + \mathcal{B}(B^+ \to D_{CP\pm} K^+)} \end{array}$
- $\mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{(\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \bar{D}_{\text{flav}}K^+))/2}$
- D_{CP+} : CP-even decay $(D \to K^+K^-)$
- D_{CP-} : CP-odd decay $(D \to K_s^0 \pi^0)$
- D_{flav} : Flavor-specific decay $(D \to K^{\pm}\pi^{\mp})$


$$\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$$

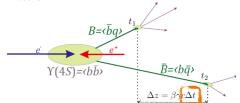
 $\mathcal{A}_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}.$

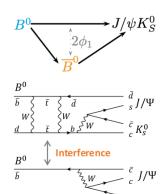
JHEP05(2024)212

GLW method

$$\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$$
 $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$ $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$ $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%,$ 3σ evidence for $A_{CP-} \neq \mathcal{A}_{CP+}$

ANGLE $\phi_1(\beta)$

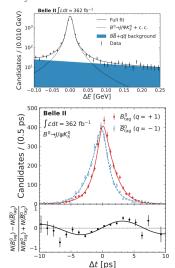

Time-dependent CPV


- ullet Oscillation-induced CPV as a function of Δt
- Boosted CMS to measure Δt from decay length

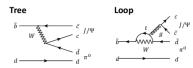
$$\begin{split} A_{CP}^{B\rightarrow f}(\Delta t) &\equiv \frac{\Gamma\left(B^0(\Delta t)\rightarrow f\right) - \Gamma\left(\bar{B}^0(\Delta t)\rightarrow f\right)}{\Gamma\left(B^0(\Delta t)\rightarrow f\right) + \Gamma\left(\bar{B}^0(\Delta t)\rightarrow f\right)} \\ &= \frac{S\cdot\sin\left(\Delta m_d\Delta t\right) - C\cdot\cos\left(\Delta m_d\Delta t\right)}{1 + \frac{1}{2}} \end{split}$$

$$S = |\sin(2\phi_1)| = Mixing induced CPV$$

C = Direct CPV



$\phi_1:B^0 o J/\psi K_S^0$

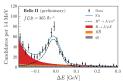

- $b \rightarrow c\bar{c}s$ transition
- Uses the GFlat flavor-tagging algorithm
- Yield extraction fit to ΔF
- Fit background-free Δt for parameters of interest
- Improved statistical uncertainty 8% (S) and 7% (C) compared to category-based FBDT flavor tagger

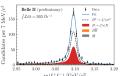
$$S = 0.724 \pm 0.035 \pm 0.009$$

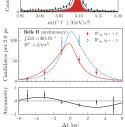
 $\rightarrow \phi_1 = (23.2 \pm 1.5 \pm 0.6)^{\circ}$
 $C = -0.035 \pm 0.026 \pm 0.029$

PhysRevD.110.012001

$\phi_1:B^0 o J/\psi\pi^0$

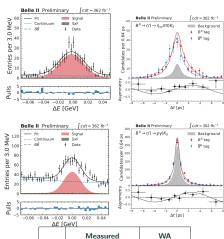



- CKM & color-suppressed tree-level $b \rightarrow c\bar{c}d$
- Constrain the loop contributions in $B^0 o J/\psi K^0$ $(b o c\bar c s)$ to determine ϕ_1
- Fit $\Delta E \& m(II)$ for background subtraction and extract yields
- Fit Δt to extract CPV parameters
- 1^{st} 5 σ observation TDCPV in this mode

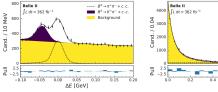

$$\begin{split} \text{BF} &= (2.00 \pm 0.12 \pm 0.10) \times 10^{-5} \\ \text{S}_{\text{CP}} &= -0.88 \pm 0.17 \pm 0.03 \\ \text{C}_{\text{CP}} &= 0.13 \pm 0.12 \pm 0.03 \end{split}$$

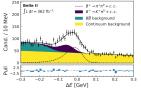
Most precise and comparable with previous measurements

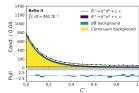
arxiv:2410.08622[PRD]



$\phi_1:B^0\to\eta^{'}K_S$

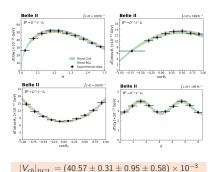

- Dominated by the Loop process: BSM could shift S & C
- Relatively large BF and limited contribution from tree amplitudes compared to other $b o sq\bar{q}$
- $\eta^{'} \to \eta(\gamma\gamma)\pi\pi \& \eta^{'} \to \rho(\pi\pi)\gamma$
- SM prediction:
 - $|\sin(2\phi_1) S_{n'K_S}| = 0.01 \pm 0.01$
 - $C_{\eta' K_S} = 0$
- Fits to ΔE , $M_{\rm bc}$, C_{BDT} & Δt
- Agreement with WA and compatible with Belle/Babar precision


	ivieasured	VVA
$S_{\eta' K^0}$	$0.67 \pm 0.10 \pm 0.04$	0.64 ± 0.05
$C_{\eta'K^0}$	$-0.19 \pm 0.08 \pm 0.03$	-0.08 ± 0.04


arxiv:2402.03713[PRD]

$\phi_2: B^0 \to \pi^+\pi^-$ and $B^+ \to \pi^+\pi^0$

$$B^0 \to \pi^+\pi^-$$
: BR = $(5.83 \pm 0.22 \pm 0.17)10^{-6}$


$B^+ \to \pi^+ \pi^0$: BR = $(5.10 \pm 0.29 \pm 0.27)10^{-6}$

$$A_{CP} = -0.081 \pm 0.054 \pm 0.008$$

PhysRevD.109.012001

- Good agreement with previous measurements
- Sensitivity is comparable with Belle using only half of Belle's data!

$|V_{cb}|$ from $ar{B} o D^*\ellar{ u}_\ell$

- Using 189 fb^{-1} of Belle II data
- Partial decay rates are reported as a function of the recoil parameter and three decay angles

$$\begin{split} \mathcal{B}\left(\bar{B}^0 \to D^{*+}e^-\bar{\nu}_e\right) &= (4.917 \pm 0.032 \pm 0.216)\%, \\ \mathcal{B}\left(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_\mu\right) &= (4.926 \pm 0.032 \pm 0.231)\%, \\ \mathcal{B}\left(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}_\ell\right) &= (4.922 \pm 0.023 \pm 0.220)\%, \\ &|V_{cb}|_{\text{CLN}} &= (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3} \end{split}$$

- Signal extraction with fit to $\cos \theta_{BY}$ and ΔM in bins of $w, \cos \theta_{\ell}, \cos \theta_{\nu}$ and χ
- Good agreement with the world average of the exclusive and inclusive determinations
- Agrees with the recent Belle measurement PhysRevD.108.012002