Studies of CP violation at Belle and Belle II

Radek Žlebčík on behalf of the Belle II collaboration

December 3, 2024 DISCRETE 2024 **Ljubljana, Slovenia**

Unitarity triangle: 30 years of development

 Unitarity Triangle constructed from CKM matrix has angles and sides which are well-defined (physics) quantities

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

6 ways of (over)constraining the Apex of the Unitarity Triangle

CP violation in interference of mixing and decay

• The S measurable from the time-dependent asymmetry between B 0 \to f $_{CP}$ and $\overline{B}{}^0$ \to f $_{CP}$

$$\mathcal{A}_{\mathrm{CP}}(\Delta t) = \frac{\mathcal{B}(\bar{B}^0 \to f_{\mathrm{CP}})(\Delta t) - \mathcal{B}(B^0 \to f_{\mathrm{CP}})(\Delta t)}{\mathcal{B}(\bar{B}^0 \to f_{\mathrm{CP}})(\Delta t) + \mathcal{B}(B^0 \to f_{\mathrm{CP}})(\Delta t)} = \frac{S}{S}\sin(\Delta m_d \Delta t) - \frac{C}{C}\cos(\Delta m_d \Delta t)$$

$$\text{Mixing-induced CPV} \qquad \text{CPV}$$

Belle2 & SuperKEKB status

- 550 fb⁻¹ of integrated luminosity collected so far (most analyses based on 364 fb⁻¹ of Run 1 4S data)
- World record instantaneous luminosity 0.47x10³⁵ cm⁻² s⁻¹
 - \rightarrow target 6x10³⁵ cm⁻² s⁻¹

Frequent beam instabilities has resulted in smaller integrated luminosity, and even to preventive turn-off of PXD in 2024

→ Most of the 2024 runtime dedicated to accelerator studies

Measuring time-dep. CPV at Belle II

 $B^0\bar{B}^0$ mass

From

- Collisions energy just above B⁰B
 ⁰ production threshold
- Due to the asymmetric beam energies B-mesons fly in the direction of the e- beam

Belle II : $\Delta z \approx 130 \,\mu\mathrm{m}$

Belle : $\Delta z \approx 200 \, \mu \mathrm{m}$

$$\beta\gamma = 0.288$$

Fully

In this talk

Global average dominated by...

$\alpha/\phi_2 = (84\pm 4)^\circ$:

 $\begin{array}{ccc} B^0 \ \rightarrow \ \pi^0 \ \pi^0 \\ B^0 \ \rightarrow \ \pi^+ \ \pi^- \end{array}$

 $B^+ \rightarrow \pi^+ \pi^0$

 $B^0 \ \to \ \rho^+ \ \rho^-$

$$\beta/\phi_1=(22.6\pm0.5)^{\circ} b \rightarrow c$$
:

$$B^0 \rightarrow J/\psi K^0_s$$

$$B^0 \to J/\psi \ \pi^0$$

 $y/\phi_3 = (66\pm3)^\circ$

$\beta/\phi_1=(20.4\pm1.4)^{\circ} b \rightarrow s$:

$$B^0 \rightarrow \eta' K^0_s$$

$$B^0 \rightarrow \phi K_s^0$$

$$B^0 \rightarrow K_s^0 K_s^0 K_s^0$$

$\Phi_1 = \beta$

GNN-based Flavor tagger and $B^0 \rightarrow J/\psi K_s^0$

- The Graph Neural Network based Flavor tagger leads to ~20% gain in the effective statistics compared to category-based FT
- FT tested in $B^0 \rightarrow J/\psi \ K^0_s$, the golden channel for the S~sin $2\phi_1$ measurement

$$S = +0.724 \pm 0.035 \pm 0.009$$
$$C = -0.035 \pm 0.026 \pm 0.029$$

Latest LHCb result Phys.Rev.Lett. 132 (2024) 2 $S = +0.726 \pm 0.014$

Important validation of time-dep. CPV machinery, already more precise than BaBar.

Phys.Rev.D 110 (2024)

$$\varepsilon_{\text{tag}}^{\text{eff}}$$
 (CB) = (31.7 ± 0.5 ± 0.4)% $\varepsilon_{\text{tag}}^{\text{eff}}$ (GFlaT) = (37.4 ± 0.4 ± 0.3)%

arXiv:2410.08622

203±17 (J/ ψ →µµ)

 $186\pm16 \, (J/\psi \rightarrow ee)$

- Color suppressed b → ccd tree-level decay
 - → loop contribution plays a role
- Important input to correct for the penguin contamination in the $B^0 \rightarrow J/\psi \ K^0_s$ (tree only: S=-sin $2\phi_1 \sim -0.71$)

$$S = -0.88 \pm 0.17 \pm 0.03$$

$$C = +0.13 \pm 0.12 \pm 0.03$$

BR =
$$(2.00 \pm 0.12 \pm 0.10) \pm 10^{-5}$$

 $B^{0} \begin{cases} \overline{b} & \overline{c} \\ d & \overline{d} \\ d & \overline{d} \end{cases} \pi^{0}$ $B^{0} \begin{cases} \overline{b} & \overline{c} \\ \overline{d} & \overline{d} \\ \overline{d} & \overline{d} \end{cases} \pi^{0}$ $B^{0} \begin{cases} \overline{b} & \overline{d} \\ \overline{d} & \overline{d} \end{cases} \pi^{0}$

The world's most precise measurement of this mode (higher precision than Belle)

PhysRevD.98.112008

$\phi_1 = \beta$ from Penguin b \rightarrow s transitions

arXiv:2402.03713

$$B^0 \to \, \eta' \, K^0_{\ s}$$

- $\eta' \rightarrow \eta(\rightarrow \gamma \gamma)\pi + \pi \eta' \rightarrow \rho \gamma$
- ~800 signal events

$$S = +0.67 \pm 0.10 \pm 0.04$$

$$C = -0.19 \pm 0.08 \pm 0.03$$

Phys.Rev.D 108 (2023) 7

$$B^0 \rightarrow \phi K^0_s$$

- Major challenge is from nonresonant B⁰ → K⁺ K⁻ K⁰_S background with opposite CP
- ~160 signal events

$$S = +0.54 \pm 0.26^{+0.06}_{-0.08}$$

$$C = -0.31 \pm 0.20 \pm 0.05$$

Phys.Rev.D 109 (2024) 11

$$B^0 \to \ K^0_{\ s} \ K^0_{\ s} \ K^0_{\ s}$$

- Major challenge is to reconstruct B^o vertex from three K^o_s "tracks"
- ~160 signal events

$$S = -1.37^{+0.35}_{-0.45} \pm 0.03$$

$$C = -0.07 \pm 0.20 \pm 0.05$$

Results compatible with World Average, not at the Belle precision yet.

$\Phi_2 = \alpha$

Experimental framework

• For $B^0 \to \pi^+\pi^-$ and $B^0 \to \pi^0 \pi^0$ the tree-level and loop contribution have similar size, but different phase

• Usage of Gronau-London isospin relations for B $\rightarrow \pi\pi$ to disentangle the effects (CKMfitter, UTfit)

$$A^{+0} = A^{+-}/\sqrt{2} + A^{00}$$

$$\bar{A}^{+0} = \bar{A}^{+-}/\sqrt{2} + \bar{A}^{00}$$

$$A^{+0}| = |\bar{A}^{+0}|$$

Need for

- All branching fractions
- Direct CP asymmetries C⁰⁰ C⁺⁻
- TD CP asymmetries S⁰⁰ S⁺⁻

Projected Belle II sensitivity for α is 1% (currently 5%)

Can be also done with $B \rightarrow \rho \rho$

Time integrated $B^0 \to \pi^0 \pi^0$

- Very difficult for LHCb, important constraint of penguin component
- Time-integrated analysis
 → getting π⁰ vertices is difficult
- BG e.g. from $B^+ \rightarrow \rho^+ (\rightarrow \pi^+ \pi^0) \pi^0$
- 4D unbinned fit in M_{bc} , ΔE , continuum suppression (C) and wrong tag probability (w)

$$B = (1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$$

 $A_{CP} = +0.06 \pm 0.30 \pm 0.06$

World average:

$$B = (1.59 \pm 0.26) \times 10^{-6}$$

$$A_{CP} = 0.30 \pm 0.20$$

126±20 signal events

World best measurement of B and C

Time integrated $B^0\to~\pi^+~\pi^-$ and $B^+\to~\pi^+~\pi^0$

- All decay modes are still stat-dominated since the π^0 efficiency systematics will improve with more data
- Measurement of the $B^0 \to \pi^+\pi^-$ CP asymmetries in the pipe-line

~1500 $B^0 \rightarrow \pi^+ \pi^-$ events

$$B = (5.83 \pm 0.22 \pm 0.17) \times 10^{-6}$$

World best

$$B = (5.10 \pm 0.29 \pm 0.32) \times 10^{-6}$$
$$A_{CP} = (-0.081 \pm 0.054 \pm 0.008) \times 10^{-6}$$

Time-dependent CPV in $B^0 \rightarrow \rho^+ \rho^-$

- The P \rightarrow VV decay, i.e. full angular analysis needed for polarization extraction, notice $\rho^+ \rightarrow \pi^+ \pi^0$
- Two soft π^0 in the final state
 - → difficult for LHCb
- 6D time-dependent fit for signal extraction

	$\mathcal{B}ig(\mathbf{10^{-6}}ig)$	f_L
Belle II	$29.0_{-2.2}^{+2.3}\ _{-3.0}^{+3.1}$	$0.921^{+0.024}_{-0.025}~^{+0.017}_{-0.015}$
Belle	$28.3 \pm 1.5 \pm 1.5$	$0.988 \pm 0.012 \pm 0.006$
BABAR	$25.5 \pm 2.1 {}^{+3.6}_{-3.9}$	$0.992 \pm 0.024 ^{+0.026}_{-0.013}$

	S	C
Belle II	$-0.26 \pm 0.19 \pm 0.08$	$-0.02\pm0.12^{+0.06}_{-0.05}$
Belle	$-0.13 \pm 0.15 \pm 0.05$	$0.00 \pm 0.10 \pm 0.06$
BABAR	$-0.17 \pm 0.20^{+0.05}_{-0.06}$	$0.01 \pm 0.15 \pm 0.06$

All parameters are measured with precision better than BaBar but worse than Belle

→ extract ϕ_2 using new data

Impact on the ϕ_2/α

- The world average of φ₂ is dominated by B factories and B → ππ & B → ρρ decay modes
- The B → ρρ only world average:

$$\phi_2 = (91.5^{+4.5}_{-5.4})^{\circ}$$

 The B → ρρ only world average (+ Belle II B⁰ → ρ⁺ρ⁻)

$$\phi_2 = (92.6^{+4.5}_{-4.8})^{\circ}$$

7% improvement in the ϕ_2 precision. The fit dominated by $S(\rho^+\rho^-)$ and $S(\rho^0\rho^0)$, both only measured at B factories.

The ρ -based estimate is slightly higher than π -based but still consistent within 2σ .

Current world average:

$$\phi_2 = (84.1^{+4.5}_{-3.8})^{\circ}$$

Conclusion

- Broad CPV physics program at Belle II
 - → **Precise** measurements of Unitarity Triangle angles
 - → CPV in rare b → s decays sensitive to New Physics
- The Run I Belle II dataset similar to BaBar but often the precision is better:
 - → Smaller interaction region
 - → Better vertex resolution
 - → The GNN-based B flavor tagging
- After LS1 (Spring 2024) Belle II continues in data taking
 - → Exceeding Belle statistics in one or two years

Backup

$\Phi^3 = \lambda$

Combined Belle & Belle II fit

• Interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$

- The amplitude ratio r_B and strong phase δ_B are model dependent
 - There are several methods of determining γ

B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]
$B^+ \to Dh^+$	$D ightarrow K_{\mathrm{S}}^{0}\pi^{0}, K^{-}K^{+}$	GLW	711 + 189
$B^+ \to D h^+$	$D\rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ \to D h^+$	$D o K_{\mathrm{S}}^0 K^- \pi^+$	GLS	711 + 362
$B^+ \to D h^+$	$D o K_{\mathrm{S}}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
$B^+ \to D h^+$	$D \to K_{\rm S}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D \to K_{\rm S}^0\pi^0, K_{\rm S}^0\phi, K_{\rm S}^0\omega, K^-K^+, \pi^-\pi^+$	GLW	210+0
$B^+ \to D^*K^+$	$D^* \to D\pi^0, D\gamma, D \to K_{\mathrm{S}}^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0

$B^+ \rightarrow D^0 (K_S h^+ h^-) h^+$

- Model-independent BPGGSZ method using Dalitz-binned D^o amplitudes:
 - → NN-based K_S reconstruction
 - \rightarrow Considering h= π , K

$$A_{B^+}\left(m_-^2, m_+^2\right) \propto A_{\bar{D}}\left(m_-^2, m_+^2\right) + r_B^{DK} e^{i\left(\delta_B^{DK} - \phi_3\right)} A_D\left(m_-^2, m_+^2\right)$$

$$\gamma = 78.4 \pm 11.4(\text{stat})$$
$$\pm 0.5(\text{syst}) \pm 1.0(\text{ext}) \text{ deg}$$

Strong D⁰-D

phases from

CLEO & BESIII

BaBar: $y = (69 \pm 17) \text{ deg}$

Bins from BESIII & CLEO

Combined Belle & Belle II fit: Results

JHEP 10 (2024) 143

- Fitted combined likelihood with 18 free parameters, inputs:
 - → 45 Belle/Belle II data points
 - → 14 "external inputs" (D decays)
- Consistent results for various methods and various decay modes, good fit quality (chi2/ndf = 38 / 41)
- Small correlations between Φ_3 and the strong phases δ_B & amplitude ratios r_B

Belle II result:

$$\Phi_3 = (75.2 \pm 7.6)^\circ$$

LHCb result:
$$\Phi_3 = (64.6 \pm 2.8)^\circ$$

B decay	D decay	Method	Data set (Belle + Belle II)[fb^{-1}]
$B^+ \to Dh^+$	$D o K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ o Dh^+$	$D\rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0
$B^+ o Dh^+$	$D ightarrow K_{\mathrm{S}}^0 K^- \pi^+$	GLS	711 + 362
$B^+ o Dh^+$	$D o K_{\mathrm{S}}^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
$B^+ o Dh^+$	$D o K_{\rm S}^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \to D^* K^+$	$D^* \to D\pi^0, D \to K_{\rm S}^0\pi^0, K_{\rm S}^0\phi, K_{\rm S}^0\omega, K^-K^+, \pi^-\pi^+$	GLW	210+0
$B^+ o D^*K^+$	$D^* \to D\pi^0, D\gamma, D \to K_{\rm S}^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0