

Status and prospects for semileptonic analyses at Belle and Belle II

markus.prim@uni-bonn.de

 $R(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu}_{\ell})}$

The $\overline{B} \to D^{(*)} \ell \overline{\nu}_{\ell}$ decay

 $\Delta \chi^2 = 1.0$ contours

Inclusive

Vub: GGOU

|V_b|: global fit

HFLAV

 $P(\chi^2) = 8.9\%$

42

|V_{cb}| [10⁻³]

Form factors parameterize the hadronic interactions with the spectator quark

xclusive |V

clusive |V

HFLAV Average

36

38

40

 \overline{d}

 ≥ 4

3.8 3.6 3.4 E 3.2 E

3 2.8

31.10.2024

Good understanding of the form factors is crucial for precise predictions and determinations of observables $R(D^{(*)}), A_{FB}, P_{\tau}(D^{(*)}), F_{L,\tau}(D^{(*)}), |V_{cb}|$

 g_{ew}

V₽

Markus Prim

Exclusive $\bar{B} \to D^* \ell \bar{\nu}_\ell$

Hadronic Tagged

Exclusive $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$

- Form factors are a function of w only
- Angles provide information on, e.g.
 - Forward-backward asymmetry
 - Longitudinal polarization fraction
 - "S" observables sensitive to new physics

$$\begin{split} \frac{\mathrm{d}\Gamma(B \to D^* \ell \nu_{\ell})}{\mathrm{d}w\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{\mathrm{V}}\mathrm{d}\chi} &= \frac{6m_{\mathrm{B}}m_{\mathrm{D}^*}^2}{8(4\pi)^4} \sqrt{w^2 - 1}(1 - 2wr + r^2)G_{\mathrm{F}}^2\eta_{\mathrm{EW}}^2|V_{\mathrm{cb}}|^2 \\ & \times \bigg((1 - \cos\theta_{\ell})^2 \sin^2\theta_{\mathrm{V}}H_+^2 + (1 + \cos\theta_{\ell})^2 \sin^2\theta_{\mathrm{V}}H_-^2 \\ & + 4\sin^2\theta_{\ell}\cos^2\theta_{\mathrm{V}}H_0^2 - 2\sin^2\theta_{\ell}\sin^2\theta_{\mathrm{V}}\cos2\chi H_+ H_- \\ & - 4\sin\theta_{\ell}(1 - \cos\theta_{\ell})\sin\theta_{\mathrm{V}}\cos\theta_{\mathrm{V}}\cos\chi H_+ H_0 \\ & + 4\sin\theta_{\ell}(1 + \cos\theta_{\ell})\sin\theta_{\mathrm{V}}\cos\theta_{\mathrm{V}}\cos\chi H_- H_0 \bigg) \,, \end{split}$$

- Measuring the 4D rate is not feasible
- So, what do we do?

Measurement Strategy

- Measure the marginal distributions of the 4D differential decay rate
- Measure the angular coefficients J(w) in bins of w

Conceptually both analyses are very similar:

- Signal extraction via a model independent variable M^2_{miss}
- Correction for migration and acceptance

$\overline{B} \to D^* \ell \overline{\nu}_{\ell}$ Channels

$$\begin{split} \bar{B}^0 &\to D^{*+} (\to D^0 \pi^+_s, D^+ \pi^0_s) \ell \bar{\nu}_\ell \\ B^- &\to D^{*0} (\to D^0 \pi^0_s) \ell \bar{\nu}_\ell \end{split}$$

First time we consider neutral slow pions

- \rightarrow larger kinematic coverage
- → but more mis-identified pions and worse resolution

Background Subtraction $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$

Background Subtraction $\bar{B} \to D^* \ell \bar{\nu}_\ell$

Repeat in 4 channels, 4 variables, 10 bins each \rightarrow 160 fits M_{miss}^2

Unfolding & Acceptance

- We measure the e.g., *w* distribution smeared by the detector resolution, and impacted by acceptance effects
- We are interested in the true underlying distribution
- \rightarrow Correct for migration effects and efficiencies

Resolution effect encoded in the migration matrix, extracted from simulation. Simulation assumptions are accounted for in the systematics budget.

Unfolding & Acceptance

- We measure the e.g., w distribution smeared by the detector resolution, and impacted by acceptance effect:
- We are interested in the true underlying distribution
- \rightarrow Correct for migration effects and efficiencies

Acceptance extracted from simulation. Simulation assumptions are accounted for in the systematics budget

Difference in the differential efficiency is caused by the slow pion efficiency: charged vs neutral

We can check the slow pion & lepton identification efficiency by testing the compatibility of different decay modes

Systematics

TABLE XII. Uncertainties in % for the $\bar{B}^0 \rightarrow D^* e \bar{\nu}_e$ channel.

 M_{miss}^2 almost modelindependent \rightarrow No significant systematic effects here

Systematic effects enter in the unfolding procedure:

Vary the MC simulation according to the size of the systematic effects, and repeat unfolding and acceptance correction (simultaneously)

						omo	ang and	accepta	nee			
			miss In			MC						FEI
Projection	Bin			$FF(B \rightarrow D^* \ell \bar{\nu}_{\ell})$	$\mathcal{B}(D \rightarrow X)$	statistics	$\epsilon(\pi_{\rm slow})$	ϵ (LID)	$\epsilon(\pi^0)$	$\epsilon(\text{Tracking})$	$\epsilon(K_S^0)$	shape
w	[1.00, 1.05)	17.50	16.65	1.48	1.04	4.91	0.85	0.32	0.19	0.09	0.02	0.81
	[1.05, 1.10)	16.27	15.76	0.63	1.01	3.78	0.64	0.20	0.14	0.07	0.01	0.46
	[1.10, 1.15)	13.38	13.08	0.46	0.40	2.74	0.20	0.15	0.10	0.04	0.01	0.21
	[1.15, 1.20)	10.54	10.09	0.52	0.16	2.98	0.12	0.09	0.02	0.00	0.02	0.31
	[1.20, 1.25)	10.01	9.69	0.52	0.17	2.43	0.17	0.04	0.01	0.00	0.00	0.29
	[1.25, 1.30)	9.42	9.11	0.59	0.23	2.29	0.17	0.05	0.05	0.03	0.01	0.18
	[1.30, 1.35)	9.87	9.50	0.41	0.40	2.57	0.24	0.10	0.08	0.02	0.01	0.41
	[1.35, 1.40)	10.33	10.05	0.23	0.45	2.28	0.25	0.18	0.08	0.03	0.01	0.41
	[1.40, 1.45)	9.62	9.33	0.61	0.40	2.19	0.29	0.21	0.10	0.03	0.01	0.06
	[1.45, 1.50)	10.86	10.58	1.43	0.60	1.86	0.34	0.25	0.09	0.04	0.02	0.01
$\cos \theta_{\ell}$	[-1.00, -0.80)	24.22	23.61	2.19	0.23	4.79	0.17	0.89	0.04	0.01	0.01	0.73
	[-0.80, -0.60)	15.05	14.63	0.58	0.15	3.37	0.09	0.81	0.05	0.01	0.00	0.27
	[-0.60, -0.40)	16.92	16.39	0.40	0.11	4.06	0.09	0.80	0.02	0.00	0.01	0.48
	[-0.40, -0.20)	12.97	12.64	0.30	0.09	2.84	0.06	0.47	0.03	0.00	0.00	0.07
	[-0.20, 0.00)	12.97	12.60	0.35	0.12	2.85	0.10	0.16	0.01	0.01	0.01	0.97
	[0.00, 0.20)	17.44	16.88	0.46	0.12	4.15	0.08	0.33	0.00	0.02	0.01	1.19
	[0.20, 0.40)	10.94	10.64	0.41	0.13	2.46	0.03	0.32	0.05	0.01	0.00	0.38
	[0.40, 0.60)	11.57	11.24	0.32	0.06	2.71	0.07	0.37	0.01	0.01	0.01	0.31
	[0.60, 0.80)	10.51	10.11	0.39	0.10	2.80	0.04	0.34	0.05	0.00	0.01	0.25
	[0.80, 1.00)	8.00	/.04	1.02	0.06	2.11	0.06	0.54	0.01	0.00	0.00	0.01
$\cos \theta_V$	[-1.00, -0.80)	6.66	6.44	0.41	0.50	1.54	0.33	0.12	0.09	0.04	0.00	0.02
	[-0.80, -0.60)	8.24	7.88	0.74	0.39	2.22	0.28	0.06	0.05	0.04	0.00	0.24
	[-0.60, -0.40)	11.30	10.97	0.69	0.48	2.56	0.27	0.04	0.07	0.03	0.00	0.08
	[-0.40, -0.20)	12.97	12.54	0.47	0.31	3.26	0.24	0.02	0.04	0.03	0.01	0.01
	[-0.20, 0.00)	14.95	14.43	1.16	0.26	3.72	0.16	0.17	0.08	0.02	0.01	0.25
	[0.00, 0.20)	21.68	21.01	1.14	0.17	5.20	0.20	0.08	0.06	0.02	0.01	0.21
	[0.20, 0.40)	17.48	16.95	0.52	0.30	4.21	0.16	0.14	0.05	0.00	0.02	0.35
	[0.40, 0.60)	17.02	16.44	0.79	0.16	4.32	0.23	0.02	0.02	0.02	0.01	0.28
	[0.80, 0.80) [0.80, 1.00)	13.60	26.30	0.33	0.56	3.08	0.43	0.08	0.10	0.05	0.01	0.55
	[0.00, 0.63]	15 49	15 11	0.24	0.22	2.26	0.10	0.00	0.02	0.00	0.01	0.17
χ	[0.00, 0.05)	15.46	13.11	0.34	0.25	2.50	0.10	0.09	0.02	0.00	0.01	0.17
	[0.05, 1.20]	13.11	14.07	0.27	0.25	2.70	0.08	0.01	0.00	0.01	0.01	0.43
	[1.20, 1.88]	12.00	12.54	0.41	0.15	2.19	0.05	0.04	0.01	0.01	0.01	0.24
	[1.00, 2.51]	16.15	15.70	0.16	0.09	3.60	0.00	0.01	0.02	0.00	0.01	0.58
	[2.51, 5.14]	11 /1	11.02	0.55	0.20	2.09	0.00	0.03	0.07	0.01	0.01	0.56
	[3.14, 5.77]	11.41	11.02	0.58	0.10	2.09	0.00	0.09	0.01	0.05	0.01	0.20
	[4 40 5 03)	11.74	11.40	0.35	0.05	2.05	0.07	0.01	0.01	0.00	0.00	0.01
	[5.03.5.65]	12.11	11.32	0.35	0.10	2.95	0.06	0.04	0.05	0.00	0.00	0.04
	[5.65, 6.28]	14.07	13.63	0.31	0.08	3.44	0.10	0.05	0.00	0.02	0.00	0.21

31.10.2024

Markus Prim

MC statistics dominant

systematic effect

13

Angular Coefficients of $B \to D^* \ell \bar{\nu}_{\ell}$

Instead of binning in w, $\cos \theta_{\ell}$, $\cos \theta_{V}$, χ , we now bin the data to determine the angular coefficients in bins of w and:

acceptance correction strategy as before!

J_i	η_i^χ	$\eta_i^{ heta_\ell}$	$\eta_i^{ heta_V}$	normalization N_i
J_{1s}	$\{+\}$	$\{+,a,a,+\}$	$\{-,c,c,-\}$	$2\pi(1)2$
J_{1c}	$\{+\}$	$\{+,a,a,+\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$
J_{2s}	$\{+\}$	$\{-,b,b,-\}$	$\{-,c,c,-\}$	$2\pi(-2/3)2$
J_{2c}	$\{+\}$	$\{-,b,b,-\}$	$\{+,d,d,+\}$	$2\pi(-2/3)(2/5)$
J_3	$\{+,-,-,+,+,-,-,+\}$	{+}	{+}	$4(4/3)^2$
J_4	$\{+,+,-,-,-,+,+\}$	$\{+,+,-,-\}$	$\{+,+,-,-\}$	$4(4/3)^2$
J_5	$\{+,+,-,-,-,+,+\}$	{+}	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$
J_{6s}	$\{+\}$	$\{+,+,-,-\}$	$\{-,c,c,-\}$	$2\pi(1)2$
J_{6c}	$\{+\}$	$\{+,+,-,-\}$	$\{+,d,d,+\}$	$2\pi(1)(2/5)$
J_7	$\{+,+,+,+,-,-,-,-\}$	$\{+\}$	$\{+,+,-,-\}$	$4(\pi/2)(4/3)$
J_8	$\{+,+,+,+,-,-,-,-\}$	$\{+,+,-,-\}$	$\{+, +, -, -\}$	$4(4/3)^2$
J_9	$\{+,+,-,-,+,+,-,-\}$	{+}	{+}	$4(4/3)^2$

 $w = v_R \cdot v_{D^{(*)}} =$

Instead of measuring the signal yield in bins of the marginal distributions: Measure signal yield in the bins of 36 angles x 4 bins of w x 4 decay modes \rightarrow 576 fits in M_{miss}^2

Lattice Compatibility

Differential Distributions of $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$

Angular Coefficients of $\overline{B} \to D^* \ell \bar{\nu}_{\ell}$

Form Factors of $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$

Based on the angular coefficients

31.10.2024

Markus Prim

LFU Observables of $\overline{B} \to D^* \ell \bar{\nu}_{\ell}$

Belle, Prim, et al arXiv:2301.07529 (Published in PRD) $\Delta A_{FB} = A_{FB}^{\mu} - A_{FB}^{e} = 0.022 \pm 0.027$ $\Delta F_{L} = F_{L}^{\mu} - F_{L}^{e} = 0.034 \pm 0.024$

Measured over full w range

Exclusive $\bar{B} \to D^* \ell \bar{\nu}_\ell$

Untagged

Untagged $\overline{B} \to D^* \ell \bar{\nu}_{\ell}$ Strategy

- $\cos \Theta_{BY}$ to discriminate signal from background
- ΔM to constrain the fake D^* background component

$$cos\theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

Untagged $\overline{B} \to D^* \ell \overline{\nu}_{\ell}$ Result

Belle II arXiv:2310.01170 PhysRevD.108.092013

Untagged $\overline{B} \to D^* \ell \bar{\nu}_\ell$ Result

Belle II arXiv:2310.01170 PhysRevD.108.092013

ToDo: Update Slide or merge with previous

$$\begin{split} \mathscr{B}(\bar{B}^{0} \to D^{*+}\ell^{-}\bar{\nu}_{\ell}) &: (4.922 \pm 0.023(stat) \pm 0.220(syst)) \,\% \\ & \text{Compatible with the current WA: } (4.97 \pm 0.12) \,\% \\ & |V_{cb}|_{BGL} = (40.57 \pm 0.31(stat) \pm 0.95(syst) \pm 0.58(th)) \cdot 10^{-3} \\ & \text{Compatible with the exclusive (inclusive) WA: } 1.5\sigma (1.3\sigma) \\ & |V_{cb}|_{CLN} = (40.13 \pm 0.27(stat) \pm 0.93(syst) \pm 0.58(th)) \cdot 10^{-3} \\ & \text{Compatible with the exclusive (inclusive) WA: } 1.1\sigma (1.6\sigma) \end{split}$$

Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for normalisation. BGL truncated using nested hypothesis test: BGL(1,2,2).

LFU test by comparing separated results for electrons and muons:

$$\begin{split} R_{e/\mu} &= 0.998 \pm 0.009(stat) \pm 0.020(syst) \\ \Delta A_{FB} &= (-17 \pm 16(stat) \pm 16(syst)) \cdot 10^{-3} \\ \Delta F_L &= (0.006 \pm 0.007(stat) \pm 0.005(syst)) \cdot 10^{-3} \end{split}$$

No deviations observed from the SM.

Dominant systematic sources:

1) slow-pion reconstruction efficiency \rightarrow 1.5% on $|V_{cb}|$ 2) $f_{+0} = \frac{\mathscr{B}(\Upsilon(4S) \rightarrow B^+B^-)}{\mathscr{B}(\Upsilon(4S) \rightarrow B^0\bar{B}^0)} \rightarrow$ 1.3% on $|V_{cb}|$

Untagged Combined $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ Strategy

Ongoing analysis – Today: Sensitivity Study

- Combined analyses allows to utilize $B \to D^* \ell \bar{\nu}_{\ell}$ downfeed also as signal
- Avoids one of the dominant systematics from the slow pion efficiency
- Directly fit helicity coefficients via forward folding to kinematic observables

Markus Prim

Untagged Combined $\overline{B} \rightarrow D^{(*)} \ell \overline{\nu}_{\ell}$

Inclusive $\overline{B} \to X_c \ell \overline{\nu}_\ell$

Hadronic Tagged

Inclusive $B \to X_c \ell \bar{\nu}_\ell$

The theoretical framework is Operator Product Expansion (OPE) and Heavy Quark Expansion (HQE)

$$d\Gamma = d\Gamma_0 + d\Gamma_{\mu\pi} \frac{\mu_{\pi}^2}{m_b^2} + d\Gamma_{\mu_G} \frac{\mu_G^2}{m_b^2} + d\Gamma_{\rho_D} \frac{\rho_D^3}{m_b^3} + d\Gamma_{\rho_{\rm LS}} \frac{\rho_{\rm LS}^3}{m_b^3} + \mathcal{O}(1/m_b^4)$$

 $d\Gamma$ are calculated perturbatively

Available at $\mathcal{O}(\alpha_s^3)$ Fael, Schönwald, Steinhauser

Phys. Rev. D 104, 016003 (2021)

 $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{LS}$ encapsulate non-perturbative dynamics

HQE parameters must be extracted from data requires the spectral moments of $B \rightarrow X_c \ell v$

Challenge: Proliferation of HQE parameters at higher order

Spectral Moments of a Distribution

- The moments are measured with cut-offs in the distribution
- Data points are highlycorrelated

 $\mu_n = \int_{-\infty}^{-\infty} (x - c)^n f(x) dx$ Raw moment: c = 0Central moment: c = Mean

First raw moment: Mean Measures the location

Second central moment: Variance Measures the spread

Third central moment: Skewness Measures asymmetry

Fourth central moment: Kurtosis Measures "tailedness"

Inclusive $B \rightarrow X_c \ell \bar{\nu}_{\ell}$ - Existing Measurements

$\langle E_{\ell} \rangle$ and $\langle M_X \rangle$

- DELPHI Eur.Phys.J.C45:35-59,2006
- CLEO
 Phys.Rev.D70:032002,2004
 Phys.Rev.D70:032003,2004
- CDF Phys.Rev.D71:051103,2005
- Babar Phys.Rev.D69:111104,2004 Phys.Rev.D81:032003,2010
- Belle Phys.Rev.D75:032005,2007 Phys.Rev.D75:032001,2007

- $\langle q^2 \rangle$
- Belle Phys.Rev.D 104 (2021) 11, 112011
- Belle II
 Phys.Rev.D 107 (2023) 7, 072002

Both analyses are conceptually identical

.

$\langle q^2 \rangle$ Moments – Measurement Strategy

Key-techniques: Hadronic tagging and kinematic fitting exploit the known initial state kinematics

Markus Prim

$\langle q^2 \rangle$ Moments – Background Subtraction

Determine background normalization in q^2 through fits to M_X

Event-wise master formula

$$\langle q^{2n} \rangle = \frac{\sum_{i=0}^{N_{data}} w(q_i^2) \times q_{calib,i}^{2n}}{\sum_{j=0}^{N_{data}} w(q_j^2)} \times \mathcal{C}_{calib} \times \mathcal{C}_{gen}$$

- Linear calibration function $q_{calib}^{2n} = (q_{reco}^{2n} - c_n)/m_n$
- Bias from assumed linearity $\mathcal{C}_{calib} = \langle q_{gen,sel}^{2n} \rangle / \langle q_{calib}^{2n} \rangle$
- Reconstruction effects
 & final state radiation

 $\mathcal{C}_{gen} = \left\langle q_{gen}^{2n} \right\rangle / \left\langle q_{gen,sel}^{2n} \right\rangle$

 $\langle q^2 \rangle$ Moments – Result

 $\mu_n = \int_{-\infty}^{+\infty} (x-c)^n f(x) dx$ Raw moment: c = 0Central moment: c = Mean

$\langle q^2 angle$ Moments

First raw moment: Mean Measures the location

Second central moment: Variance Measures the spread

Third central moment: Skewness Measures asymmetry

Fourth central moment: Kurtosis Measures "tailedness"

Systematics

- Background yields and shape
- Composition of the *X_c* system
- Simulated detector resolution

Combined fit to Belle & Belle II $\langle q^2 \rangle$

Markus Prim

$R(D^{(*)})$

Hadronic and Semileptonic Tagged

Generic Strategy at B-Factories

- 3-class classification problem: signal, normalization, background
- Normalization chosen to cancel systematics (same topology and/or final state)

Leverage **fully known kinematics** and that **each reconstructed particle is assigned** to a decay

Nice illustration by F. Bernlochner

Belle Legacy Results

Belle, Phys.Rev.D 92, 072014 (2015) $R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

SL Tag $\tau \rightarrow \ell$ Belle, Phys. Rev. Lett. 124, 161803 (2020) $R(D) = 0.307 \pm 0.037 \pm 0.016$ $R(D^*) = 0.283 \pm 0.018 \pm 0.014$

Had. Tag
$$\tau \rightarrow \ell$$

Had. Tag

 $\tau \rightarrow \pi, \rho$

BaBar, Phys.Rev.D 88, 072012 (2013) $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Belle, Phys. Rev. D 97, 012004 (2018)

$$P_{\tau}(D^*) = -0.38 \pm 0.51 \pm {}^{0.21}_{0.16}$$

 $R(D^*) = 0.270 \pm 0.035 \pm {}^{0.028}_{0.025}$

And the Start of a New Era

Belle, Phys.Rev.D 92, 072014 (2015) $R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

SL Tag $\tau \rightarrow \ell$

Belle, Phys. Rev. Lett. 124, 161803 (2020) $R(D) = 0.307 \pm 0.037 \pm 0.016$ $R(D^*) = 0.283 \pm 0.018 \pm 0.014$ Had. Tag $\tau \rightarrow \ell$

Had. Tag

 $\tau \rightarrow \pi, \rho$

BaBar, Phys.Rev.D 88, 072012 (2013) $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

Belle, Phys. Rev. D 97, 012004 (2018) $P_{\tau}(D^*) = -0.38 \pm 0.51 \pm ^{0.21}_{0.16}$ $R(D^*) = 0.270 \pm 0.035 \pm ^{0.028}_{0.025}$

Challenges: Form Factors

					Syste	matic u	ncertainty [%]		Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)} l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	$B\!AB\!AR$ $^{\rm a}$	ℓνν	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\mathrm{b}}$	$\ell u u$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(\mathcal{D}^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D)$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi u, ho u$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\rm LHCb^{e}$	$\pi\pi\pi\pi(\pi^0) u$		4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	$\mu u u$	—	6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

^a (Lees *et al.*, 2012, 2013)

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b)

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser arXiv:2101.08326, Review of Modern Physics

$B \rightarrow D^{(*)} \ell \overline{\nu}_{\ell}$ form factors impact the efficiency determination

Lots of progress from lattice community: ٠ nonzero-recoil $B \rightarrow D^*$ form factors

Fermilab/MILC	HPQCD	JLQCD
arXiv:2105.14019	arXiv:2304.03137	arXiv:2306.05657

Lots of progress from the experimental community: ٠ new Belle & Belle II measurements of $B \to D^{(*)} \ell \bar{\nu}_{\ell}$ Belle Belle II - differential distributions arXiv:2301.07529. PRD arXiv:2310.01170, PRD angular coefficients Belle Markus Prim arXiv:2310.20286

Source	Uncertainty
PDF shapes	$^{+9.1\%}_{-8.3\%}$
Simulation sample size	$^{+7.5\%}_{-7.5\%}$
$\overline{B} \to D^{**} \ell^- \overline{\nu}_\ell$ branching fractions	$^{+4.8\%}_{-3.5\%}$
Fixed backgrounds	$^{+2.7\%}_{-2.3\%}$
Hadronic B decay branching fractions	$^{+2.1\%}_{-2.1\%}$
Reconstruction efficiency	$^{+2.0\%}_{-2.0\%}$
Kernel density estimation	$^{+2.0\%}_{-0.8\%}$
Form factors	$^{+0.5\%}_{-0.1\%}$
Peaking background in ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$
$\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	$^{+0.2\%}_{-0.2\%}$
$R(D^*)$ fit method	$^{+0.1\%}_{-0.1\%}$
Total systematic uncertainty	$^{+13.5\%}_{-12.3\%}$

Uncertainty [%] Source e μ Experimental sample size 8.812.07.1Simulation sample size 6.710.65.7Tracking efficiency 2.93.3 3.0Lepton identification 2.85.22.4 $X_c \ell \nu M_X$ shape 7.36.8 7.1Background (p_{ℓ}, M_X) shape 5.811.55.7 $X\ell\nu$ branching fractions 7.010.07.7 $X\tau\nu$ branching fraction 1.0 1.0 1.0 $X_{c}\tau(\ell)\nu$ form factors 7.87.48.9Total 18.125.617.3

Belle II $R(D^*)$ arXiv:2401.02840

Belle II R(X)arXiv:2311.07248

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$B \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

LHCb $R(D^+)$ LHCb-PAPER-2024-007

Challenges: Form Factors

31.10.2024

Challenges: Feeddown from $\overline{B} \rightarrow D^{**} \ell \overline{\nu}_{\ell}$

					\mathbf{Syst}	ematic un	certainty [%]]	Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)}l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	$B\!AB\!AR$ ^a	$\ell \nu \nu$	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\operatorname{b}}$	$\ell u u$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\operatorname{b}}$	$\ell u u$	$\mathbf{Semil.}$	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(\mathcal{D}^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{R}(D^*)$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi u, ho u$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\mathrm{LHCb}^{\mathrm{e}}$	$\pi\pi\pi(\pi^0) u$		4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	μνν	—	6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

^a (Lees *et al.*, 2012, 2013)

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b)

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser arXiv:2101.08326, Review of Modern Physics

Sizeable systematic impact from $B \rightarrow D^{**} \ell \overline{\nu}_{\ell}$ decays

Source	Uncertainty
PDF shapes	+9.1% -8.3%
Simulation sample size	+7.5% -7.5%
$\overline{B} \to D^{**} \ell^- \overline{\nu}_\ell$ branching fractions	$^{+4.8\%}_{-3.5\%}$
Fixed backgrounds	$^{+2.7\%}_{-2.3\%}$
Hadronic B decay branching fractions	$^{+2.1\%}_{-2.1\%}$
Reconstruction efficiency	$^{+2.0\%}_{-2.0\%}$
Kernel density estimation	$^{+2.0\%}_{-0.8\%}$
Form factors	$^{+0.5\%}_{-0.1\%}$
Peaking background in ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$
$\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	$^{+0.2\%}_{-0.2\%}$
$R(D^*)$ fit method	$^{+0.1\%}_{-0.1\%}$
Total systematic uncertainty	$^{+13.5\%}_{-12.3\%}$

Uncertainty [%] Source e μ 12.0Experimental sample size 8.87.1Simulation sample size 6.710.65.7Tracking efficiency 2.93.33.0Lepton identification 2.85.22.47.3 $X_c \ell \nu M_X$ shape 6.87.1Background (p_{ℓ}, M_X) shape 5.75.811.5 $X\ell\nu$ branching fractions 7.010.07.7 $X\tau\nu$ branching fractions 1.01.0 1.0 $X_c \tau(\ell) \nu$ form factors 7.48.97.8Total 18.125.617.3

Belle II *R*(*X*) arXiv:2311.07248

Belle II *R*(*D*^{*}) arXiv:2401.02840

LHCb $R(D^+)$ LHCb-PAPER-2024-007

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$B \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

Challenges: Feeddown from $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$

$\mathcal{B}(\mathrm{B}^+ \to X^0_{\mathrm{c}} \ell^+ \nu_\ell) \approx 10.79 \,\%$

◀			
${ m D}^0\ell^+ u_\ell$ 2.31 %	${ m D}^{*0}\ell^+ u_\ell$ 5.05 %	${f D^{**0}}\ell^+ u_\ell + {f Other} \ 2.38\%$	$\begin{array}{c} {\rm Gap} \\ \sim 1.05\% \end{array}$

Discrepancies in the measurements of $B o D^{**} \ell \overline{oldsymbol{ u}}_\ell$

- Tension in the available measurements
- Tension with theory prediction: $1/_2 \leftrightarrow 3/_2$ puzzle
- The nature of the D^{**} states is unclear

inclusive ≠ sum of exclusive

- These poorly understood components lead to a sizeable systematic effect in the experimental measurements
- Common for Belle II & LHCb

U.G. Meißner arXiv:2005.06909, Symmetry

Challenges: Feeddown from $\overline{B} \rightarrow D^{**} \ell \overline{\nu}_{\ell}$

- Is the $D_0^*(2300)$ a resonance from the quark model, or a more complex structure described by $U\chi PT$?
- Form factors for semileptonic $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$ decays assume the narrow width approximation for the broad D^{**}

2.6

Inputs from hadron physics (theory and experiment) will drive us forward

Challenges: Feeddown from $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$

- Modelling of $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$ decays in simulation depends on proper knowledge of form factors
- Background estimation challenging
- Active progress from our theory colleagues

- Is the $D_0^*(2300)$ a resonance from the quark model, or a more complex structure described by $U\chi PT$?
- Form factors for semileptonic $\overline{B} \to D^{**} \ell \overline{v}_{\ell}$ decays assume the narrow width approximation for the broad D^{**}

BGL generalization

E. J. Gustafson, F. Herren, R. S. Van de Water, R. van Tonder, M. L. Wagman, Prim arXiv:2311.00864

On-shell recursion + HQET

C. A. Manzari, D. J. Robinson arXiv:2402.12460

Challenges: Simulation Sample Size

					Syste	ematic u	ncertainty [%]]	Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)} l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	$B\!AB\!AR$ ^a	$\ell u u$	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\mathrm{b}}$	$\ell u u$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	$\ell u u$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell u u$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(\mathcal{D}^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell u u$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D)$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi u, ho u$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\rm LHCb^{e}$	$\pi\pi\pi\pi(\pi^0) u$	_	4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	$\mu u u$		6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

^a (Lees *et al.*, 2012, 2013)

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b)

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser arXiv:2101.08326, Review of Modern Physics

MC statistics is often the leading systematic uncertainty, needed for:

- Fit templates
- Efficiency determination .
- Training of MVA classifiers

"trivial but costly" to improve

Source	Uncertainty
PDF shapes	$^{+9.1\%}_{-8.3\%}$
Simulation sample size	$^{+7.5\%}_{-7.5\%}$
$\overline{B} \to D^{**} \ell^- \overline{\nu}_{\ell}$ branching fractions	$^{+4.8\%}_{-3.5\%}$
Fixed backgrounds	$^{+2.7\%}_{-2.3\%}$
Hadronic ${\cal B}$ decay branching fractions	$^{+2.1\%}_{-2.1\%}$
Reconstruction efficiency	$^{+2.0\%}_{-2.0\%}$
Kernel density estimation	$^{+2.0\%}_{-0.8\%}$
Form factors	$^{+0.5\%}_{-0.1\%}$
Peaking background in ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$
$\tau^- \to \ell^- \nu_\tau \bar{\nu}_\ell$ branching fractions	$^{+0.2\%}_{-0.2\%}$
$R(D^*)$ fit method	$^{+0.1\%}_{-0.1\%}$
Total systematic uncertainty	$^{+13.5\%}_{-12.3\%}$

Source	Uncertainty [%]		
Source	e	μ	l
Experimental sample size	8.8	12.0	7.1
Simulation sample size	6.7	10.6	5.7
Tracking efficiency	2.9	3.3	3.0
Lepton identification	2.8	5.2	2.4
$X_c \ell \nu M_X$ shape	7.3	6.8	7.1
Background (p_{ℓ}, M_X) shape	5.8	11.5	5.7
$X\ell\nu$ branching fractions	7.0	10.0	7.7
$X\tau\nu$ branching fractions	1.0	1.0	1.0
$X_c \tau(\ell) \nu$ form factors	7.4	8.9	7.8
Total	18.1	25.6	17.3

Belle II $R(D^*)$ arXiv:2401.02840

Belle II R(X)arXiv:2311.07248

LHCb $R(D^+)$ LHCb-PAPER-2024-007

_

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086
		E 1

Status Quo & Quo Vadis

31.10.2024

Searching for New Physics

New physics contribution alter signal and **background decay distributions** \rightarrow Impact on the acceptance and fitting templates

31.10.2024

Searching for New Physics

Challenge: We need MC for each NP working point

- Our standard generator EvtGen does not • incorporate NP effects
- Very costly to re-produce MC at various NP working points

Luckily for us, this problem has been solved!

It also allows us to perform **truly global** fits for $b \rightarrow b$ $c\tau \bar{\nu}_{\tau}$ transitions that **avoid biases and remove SM** priors

Searching for New Physics

Proof of concept based on LHCb simulation and a Belle toy

J. Albrecht, F. Bernlochner, M. Colonna, B. Mitreska, M. Prim, I. Tsaklidis Work in progress

It also allows us to perform **truly global** fits for $b \rightarrow c\tau \bar{\nu}_{\tau}$ transitions that **avoid biases and remove SM priors**

