

Belle II Status and Prospects

Michel Hernandez Villanueva

Physics Department, Brookhaven National Laboratory

XV Latin American Symposium on High Energy Physics November 06, 2024

B-Factories

Features of a B-Factory

KEKB collider : 711 fb⁻¹@Y(4S) [1999-2010] SLAC-PEP II collider : 462 fb⁻¹@Y(4S) [1999-2008]

• Well-defined initial state

Features of a B-Factory

SLAC-PEP II collider : 462 fb⁻¹@Y(4S) [1999-2008]

- Well-defined initial state
- High luminosity

Limited by beam energy

Features of a B-Factory

KEKB collider : 711 fb⁻¹@Y(4S) [1999-2010] SLAC-PEP II collider : 462 fb⁻¹@Y(4S) [1999-2008]

- Well-defined initial state
- High luminosity
- Asymmetric collisions

 Allows to make time dependent analysis of CP asymmetries

Highlights of the Belle Experiment

Discovery in Belle

Highlights of the Belle Experiment

SuperKEKB

Goal: deliver multi ab⁻¹ data set
 O(10) more than previous B factories

• "Nano-beams": vertical beam size is 50 nm at the IP

- Challenges at L=6.0x10³⁵ cm⁻² s⁻¹:
 - Higher background (Radiative Bhabha, Touschek, beam-gas scattering, etc.)
 - Higher trigger rates (High performance DAQ, computing)

Super

KEKB

Belle II in a Nutshell

National Laboratory

10

Belle II in a Nutshell

Brookhaven

National Laboratory

Software:

Open-source algorithms for simulation, reconstruction, visualization, and analysis

Comput. Softw. Big Sci. 3 1 (2019)

arXiv:1011.0352 [physics.ins-det]

EPJ Web Conf., 245 (2020) 11007

10

Integrated Luminosity

Brookhaven

lational Laboratory

• Super B-factory performance levels

- Instantaneous luminosity above the previous B factories, with lower beam currents than KEKB
- Long shutdown 1 during 2022 2024
 - Upgrade in the accelerator
 - Installation of full vertex detector
- Data taking restarted in 2024

The Belle II Physics Program

- A unique environment for high-precision measurements and BSM searches
- The program covers measurements in B decays, charm, dark sector, etc.
- Several of them, unique to Belle II
- Today we will cover a small fraction of the results
 - A full list is available at <u>belle2.org</u>

B-Physics

B-Factories 101: Event Shape and Kinematics

or

B-Factories 101: Event Shape and Kinematics

• $B\bar{B}$ events have a spherical shape, useful to discriminate them from $q\bar{q}$ events $\sqrt{s} = 10.58 \text{ GeV} \approx 2m_B$

B-Factories 101: Event Shape and Kinematics

• $B\overline{B}$ events have a spherical shape, useful to discriminate them from $q\bar{q}$ events $\sqrt{s} = 10.58 \text{ GeV} \approx 2m_R$ $p(B) \approx 0.3 \text{ GeV}/c$ $p(q) \approx 5 \text{ GeV}/c$ $M_{bc} = \sqrt{(\sqrt{s/2})^2 - \vec{p}_B^2}$ $\Delta E = E_B - \sqrt{s/2}$ Kinematic constraints are used Signal Continuum to separate signal from background **BB** background and $q\bar{q}$ continuum Signal Continuum $B\overline{B}$ background

-0.3

-0.2

-0.1

0.1

0

0.2

 ΔE (GeV)

0.3

5.2

5.22

5.24

5.26

5.28

 $M_{\rm bc}$ (GeV/c²)

5.3

B-Factories 101: Tagging

Full event interpretation

- Reconstructs one of the B mesons (tag)
- Infers **strong kinematic constraints** for the remaining B meson in the event

Comput Softw Big Sci 3, 6 (2019)

B-Factories 101: Tagging

Full event interpretation

- Reconstructs one of the B mesons (tag)
- Infers **strong kinematic constraints** for the remaining B meson in the event

Flavor tagger

- Determine the flavor of **neutral** B mesons
- Quantum correlation allows identification of "signal B" flavor based on "tag B"

Belle II. Eur. Phys. J. C 82, 283 (2022)

Comput Softw Big Sci 3, 6 (2019)

Analysis techniques unique to B factories

The CKM Matrix Unitarity

- Unitarity conditions can be represented as triangles
 - Three mixing angles and one CP violating phase

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Graph-neural-network flavor tagging and ϕ_1

- A novel technique in Belle II to tag flavors:
 Graph-neural-network flavor tagging (GFIaT)
 - Accounts for relations between final-state particles
 - Calibrated using "self-tagging" *B* decays, like $B^0 \rightarrow D^{*-}\pi^+ \rightarrow \bar{D}\pi^-\pi^+ \rightarrow K^+\pi^-\pi^-\pi^+$

Graph-neural-network flavor tagging and ϕ_1

• Using as a benchmark the "golden channel" $B^0 \rightarrow J/\psi K_s^0$

 $= \mathbf{S} \cdot \sin(\Delta m_d \Delta t) - \mathbf{C} \cdot \cos(\Delta m_d \Delta t)$

Direct CPV

 $\mathbf{S} = |\sin(2\phi_1)|$

 $A_{CP}^{B \to f}(\Delta t) \equiv \frac{\Gamma(B^0(\Delta t) \to f) - \Gamma(\bar{B}^0(\Delta t) \to f)}{\Gamma(B^0(\Delta t) \to f) + \Gamma(\bar{B}^0(\Delta t) \to f)}$

Mix-induced CPV

- A novel technique in Belle II to tag flavors:
 Graph-neural-network flavor tagging (GFlaT)
 - Accounts for relations between final-state particles
 - Calibrated using "self-tagging" *B* decays, like $B^0 \rightarrow D^{*-}\pi^+ \rightarrow \bar{D}\pi^-\pi^+ \rightarrow K^+\pi^-\pi^-\pi^+$

 $\phi_2: B^0 \to \pi^0 \pi^0$

- Tree-level $b
 ightarrow u ar{u} d$ decays are sensitive to ϕ_2
 - loop b
 ightarrow d loop contributions add an extra phase $\Delta \phi_2$
- Determining ϕ_2 from $B \to \pi\pi$ decays, requires BRs and A_{CP} of:

 $B^0 \to \pi^+ \pi^-, \ B^+ \to \pi^+ \pi^0, \ B^0 \to \pi^0 \pi^0$ [Phys. Rev. Lett. 65, 3381]

FPCP 2024 Paper in preparation

$$\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) = \frac{\Gamma(\overline{B}^0 \to \pi^0 \pi^0) - \Gamma(B^0 \to \pi^0 \pi^0)}{\Gamma(\overline{B}^0 \to \pi^0 \pi^0) + \Gamma(B^0 \to \pi^0 \pi^0)}$$

 $\phi_2: B^0 \to \pi^0 \pi^0$

- Tree-level $b
 ightarrow u ar{u} d$ decays are sensitive to ϕ_2
 - loop b
 ightarrow d loop contributions add an extra phase $\Delta \phi_2$
- Determining ϕ_2 from $B \to \pi\pi$ decays, requires BRs and A_{CP} of: $B^0 \to \pi^+\pi^-, B^+ \to \pi^+\pi^0, B^0 \to \pi^0\pi^0$ [Phys. Rev. Lett. 65, 3381]
- Updated measurement of $B^0 \rightarrow \pi^0 \pi^0$ at Belle II with full run 1 statistics
 - Experimentally challenging: 4 photons with no tracks
 - A BDT classifier to discriminate signal
 - Using the graph flavor tagger to determine signal flavor and measure CP asymmetry

$$\mathscr{B}(B \to \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.12) \times 10^{-6}$$

 $A_{CP}(B \to \pi^0 \pi^0) = 0.06 \pm 0.30 \pm 0.05$

20

$$\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) = \frac{\Gamma(\overline{B}^0 \to \pi^0 \pi^0) - \Gamma(B^0 \to \pi^0 \pi^0)}{\Gamma(\overline{B}^0 \to \pi^0 \pi^0) + \Gamma(B^0 \to \pi^0 \pi^0)}$$

 $\phi_2: B^0 \to \rho^+ \rho^-$

- Small loop contribution golden model for the extraction of ϕ_2
- It is a pseudo scalar to vector-vector decay longitudinal and transverse polarization states
 - The fraction of longitudinal polarization $f_{\!L}$ determines the sensitivity of the CPV parameters
 - f_L is extracted from the helicity angles θ_ρ

 $\phi_2: B^0 \to \rho^+ \rho^-$

- Small loop contribution golden model for the extraction of ϕ_2
- It is a pseudo scalar to vector-vector decay longitudinal and transverse polarization states
 - The fraction of longitudinal polarization f_L determines the sensitivity of the CPV parameters
 - f_L is extracted from the helicity angles θ_ρ
- Signal candidates reconstructed via $\rho^+ \to \pi^+ (\pi^0 \to \gamma \gamma)$
- Selection via MVA techniques
 - Boosted Decision Tree (BDT) to classify real photons from hadronic showers
 - <u>TabNet classifier</u> for continuum suppression (CS)

 $\phi_2: B^0 \to \rho^+ \rho^-$

- Fit for branching ratio and f_L : $\Delta E, m_{\rho}, \cos \theta_{\rho}, \mathrm{CS}$
- Systematic uncertainties dominated by π^0 efficiency and MC mismodeling

 $\mathcal{B}(B^0 \to \rho^+ \rho^-) = (29.0^{+2.3}_{-2.2} {}^{+3.1}_{-3.0}) \times 10^{-6}$ $f_L(B^0 \to \rho^+ \rho^-) = 0.921^{+0.024}_{-0.022} {}^{+0.017}_{-0.015}$

Consistent with previous measurements

 $\phi_2: B^0 \to \rho^+ \rho^-$

Paper in preparation

- Fit for CP asymmetries: ΔE , m_{ρ} , $cos\theta_{\rho}$ + decay time difference between B_{sig} and B_{tag} (Δt) and flavor tagger
- Combining world averages of $B \rightarrow \rho \rho$: $\phi_2 = (92.6^{+4.5}_{-4.8})^{\circ}$

$$|V_{ub}|$$
 from $B^0 \to \pi^- \ell^+ \nu$ and $B^+ \to \rho^0 \ell^+ \nu$

- The rate of $b \to u$ decays is proportional to $|V_{ub}|^2$; Determination by inclusive and exclusive methods differ by 2.5 σ
- Simultaneous study of the charmless semileptonic decays $B^0 \to \pi^- \ell^+ \nu \& B^+ \to \rho^0 \ell^+ \nu$
 - Extract signal yields from simultaneous fit to binned MC templates
- p_{ν} estimated from all reconstructed tracks and clusters
 - Then used to reconstruct M_{bc} & ΔE
- Background suppressed using BDTs

 $\mathscr{B}(B^0 \to \pi^- \ell^+ \nu_{\ell}) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$ $\mathscr{B}(B^+ \to \rho^0 \ell^+ \nu_{\ell}) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$

[PDG 2023]

 $|V_{ub}|$ from $B^0 \to \pi^- \ell^+ \nu$ and $B^+ \to \rho^0 \ell^+ \nu$

- $|V_{ub}|$ extracted from the $q^2 = (p_B p_{\pi/\rho})^2$ spectra with form factor determinations
 - Lattice QCD (LQCD) [Eur. Phys. J. C 82, 869 (2022)]
 - Light-cone sum rule (LCSR) [J. High Energ. Phys. 2021, 36 (2021), J. High Energ. Phys. 2016, 98 (2016)]

arxiv:2407.17403 Submitted to PRD

Rare B Decays

$B^+ \to K^+ \nu \bar{\nu} \, \mathrm{decays}$

- Flavor-changing neutral current $b \rightarrow s \nu \bar{\nu}$ transitions suppressed in the SM due to the GIM mechanism
- Reliable prediction for the branching ratio in the SM

 $BR(B^+ \to K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6}$

<u>PRD 107, 014511 (2023)</u>

- Can be modified by non-SM contributions
 - Leptoquarks
 - $B^+ \rightarrow K^+ + \text{dark matter}$
- New approach: inclusive + hadronic B-tagging & MVA classifier
 - Inclusive tag increase signal efficiency by 35% vs exclusive tag
 - Hadronic tag for consistency check and 10% increase in precision for final combination

$B^+ \to K^+ \nu \bar{\nu} \, \mathrm{decays}$

- Flavor-changing neutral current $b \to s \nu \bar{\nu}$ transitions suppressed in the SM due to the GIM mechanism
- Reliable prediction for the branching ratio in the SM

 $BR(B^+ \to K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6}$ PRD 107, 014511 (2023)

- Can be modified by non-SM contributions
 - Leptoquarks
 - $B^+ \rightarrow K^+ + \text{dark matter}$
- New approach: inclusive + hadronic B-tagging & MVA classifier
 - Inclusive tag increase signal efficiency by 35% vs exclusive tag
 - **Hadronic tag** for consistency check and 10% increase in precision for final combination

• Validated with $B^+ \rightarrow K^+ + J/\psi$:

Evidence for $B^+ \to K^+ \nu \bar{\nu}$ decays

Phys. Rev. D 109, 112006

 $R^0 \rightarrow K^{*0} \tau^+ \tau^-$ decays

- FCNC suppressed in the SM $BR(B^0 \to K^{*0}\tau^+\tau^-) = (0.98 \pm 0.10) \times 10^{-7}$
- · New physics models enhance the branching ratio significantly
 - Stronger BSM couplings to the third fermion generation
 [Phys. Rev. Lett. 120, 181802]
- Approach: τ reconstructed from $\tau \to \ell \bar{\nu}_{\ell} \nu_{\tau}, \tau \to \pi \nu_{\tau}, \tau \to \pi \rho_{\tau}$ & hadronic B-tagging
 - No signal peak & large backgrounds

Brookhaven

• MVA classifier trained with kinematics of the event: missing energy, q^2 , $M(K^* + \text{track})$, etc

 $BR(B^0 \to K^{*0} \tau^+ \tau^-) < 1.73 \times 10^{-3}$ at 90% C.L.

• Most stringent result to date for $b \rightarrow s \tau \tau$ transitions

Tau Leptons

Belle II is a τ Factory too

• At Y(4S):

 $\sigma(e^+e^- \rightarrow B\bar{B}) = 1.05 \text{ nb}$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$

- Suitable environment for the study of tau lepton decays
 - $\sim 4\pi$ angular coverage
 - Triggers for low multiplicity events
 - Similar PID performance for e, μ leptons and π, K mesons

Tau Lepton Mass Measurement

- Measured in the decay mode $\tau \rightarrow 3\pi\nu$, using a pseudomass technique
- The tau mass can be calculated as

$$\begin{split} m_{\tau}^2 &= (p_h + p_{\nu})^2 \\ &= 2E_h(E_{\tau} - E_h) + m_h^2 - 2 \,|\vec{p}_h| \,(E_{\tau} - E_h) \,\cos(\vec{p}_h, \vec{p}_{\nu}) \end{split}$$

• As the direction of the neutrino is unknown, the approximation $\cos(\vec{p}_{\nu},\vec{p}_{h})=1$ is taken, resulting in

• $M_{\min}^2 = 2E_h(E_\tau - E_h) + m_h^2 - 2 |\vec{p}_h| (E_\tau - E_h) < m_\tau^2$

 Then, the distribution of the pseudomass is fitted to an empirical edge function, and the position of the cutoff indicates the value of the mass

Tau Lepton Mass Measurement

- Measured in the decay mode $\tau \rightarrow 3\pi\nu$, using a pseudomass technique
- The tau mass can be calculated as

$$\begin{split} m_{\tau}^2 &= (p_h + p_{\nu})^2 \\ &= 2E_h(E_{\tau} - E_h) + m_h^2 - 2 \,|\,\vec{p}_h\,|\,(E_{\tau} - E_h)\,\cos(\vec{p}_h,\vec{p}_{\nu}) \end{split}$$

- As the direction of the neutrino is unknown, the approximation $\cos(\vec{p}_{\nu},\vec{p}_{h})=1$ is taken, resulting in
 - $M_{\min}^2 = 2E_h(E_\tau E_h) + m_h^2 2 |\vec{p}_h| (E_\tau E_h) < m_\tau^2$
- Then, the distribution of the pseudomass is fitted to an empirical edge function, and the position of the cutoff indicates the value of the mass

Lepton Flavor Universality Test

- The coupling of leptons to W bosons is flavor-independent in the SM
- + τ decays enable a test of μ e universality
- Experimental challenge: particle ID

 $g_e = g_\mu = g_\tau$?

Lepton Flavor Universality Test

- The coupling of leptons to W bosons is flavor-independent in the SM
- τ decays enable a test of μ e universality
- Experimental challenge: particle ID

$$\left(\frac{g_{\mu}}{g_{e}}\right)^{2} \propto R_{\mu} \times \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \stackrel{\text{SM}}{=} 1 \qquad R_{\mu} = \frac{BR(\tau^{-} \to \mu^{-}\bar{\nu}_{\mu}\nu_{\tau})}{BR(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \stackrel{\text{SM}}{=} 0.9726$$

 $g_e = g_\mu = g_\tau$?

Lepton Flavor Violation

- Quarks change generations
- Neutrinos change flavor
 - Lepton Flavor Violation (LFV) is an established fact, but only in neutrinos
- What about charged leptons?
 - Neutrinos with mass \rightarrow CLFV
 - But extremely suppressed

Figure: Wikipedia

Lepton Flavor Violation

- Quarks change generations
- Neutrinos change flavor
 - Lepton Flavor Violation (LFV) is an established fact, but only in neutrinos
- What about charged leptons?
 - Neutrinos with mass $\rightarrow \text{CLFV}$
 - But extremely suppressed
- Observation of CLFV is a clear signature of New Physics!

W

~

U

SM case:

BR ~10-55

Figure: Wikipedia

 $\tau \rightarrow 3\mu$

- Inclusive tagging: only the signal τ is reconstructed from 3 muons
- BDT-based selection with the rest of event
- Define a signal region in the $M_{3\mu}, \, \Delta E$ plane
 - One event after opening the box
 - $\mathscr{B}(\tau^+ \to \mu^+ \mu^- \mu^+) < 1.9 \times 10^{-8}$

 $\mu\mu\mu\mu$

Stat. Unc.

μμττ

Charmed Hadrons

Precise charm lifetime measurements

- Belle II can measure absolute lifetimes with high precision
 - Very good vertex resolution, small beam size
 - Precise calibration of particle momentum
 - Excellent detector alignment

Precise charm lifetime measurements

- Belle II can measure absolute lifetimes with high precision
 - Very good vertex resolution, small beam size
 - Precise calibration of particle momentum
 - Excellent detector alignment
- World-leading measurements for $D^0, D^+, D_s^+, \Lambda_c^+$, confirmation of Ω_c^0

 10^{3}

Belle,

BABAR

Belle¹

 $D^0 \rightarrow K^- \pi^+$

CP Violation in $D^0 \rightarrow K_s^0 K_s^0$

- Involves the interference of $c\bar{u} \rightarrow s\bar{s}$ and $c\bar{u} \rightarrow d\bar{d}$ transitions
 - A_{CP} may be enhanced to an observable level
- · Current world-average limited by statistics
 - New measurement combining Belle & Belle II datasets
- Determination using $D^0 \rightarrow K^+ K^-$ as control mode
 - $A_{CP}^{K_sK_s} = \left(A_{raw}^{K_sK_s} A_{raw}^{KK}\right) + A_{CP}^{KK}$
- Background rejection using the flight distance of the K_s^0 candidates

 $S_{min} = \log[\min(L_1/\sigma_{L_1}, L_2/\sigma_{L_2})]$

$$A_{CP}(D^{0} \to K_{\rm s}^{0}K_{\rm s}^{0}) = \frac{\Gamma(D^{0} \to K_{\rm s}^{0}K_{\rm s}^{0}) - \Gamma(\overline{D}^{0} \to K_{\rm s}^{0}K_{\rm s}^{0})}{\Gamma(D^{0} \to K_{\rm s}^{0}K_{\rm s}^{0}) + \Gamma(\overline{D}^{0} \to K_{\rm s}^{0}K_{\rm s}^{0})}$$
$$A_{\rm raw}^{K_{\rm s}^{0}K_{\rm s}^{0}} = \frac{N(D^{0} \to K_{\rm s}^{0}K_{\rm s}^{0}) - N(\overline{D}^{0} \to K_{\rm s}^{0}K_{\rm s}^{0})}{N(D^{0} \to K_{\rm s}^{0}K_{\rm s}^{0}) + N(\overline{D}^{0} \to K_{\rm s}^{0}K_{\rm s}^{0})}$$

CP Violation in $D^0 \rightarrow K_s^0 K_s^0$

Paper in preparation

- Signal extraction via simultaneous fit to $m(D^0\pi^+)$ and S_{min}
- Tagging the flavor via $D^{*+} \rightarrow D^0 \pi^+$
- Using 980 fb⁻¹ of Belle data, and 428 fb⁻¹ of Belle II data $A_{CP}(D^0 \rightarrow K_s K_s)$ in Belle: (-1.1 ± 1.6 ± 0.1) % $A_{CP}(D^0 \rightarrow K_s K_s)$ in Belle II: (-2.2± 2.3 ± 0.1) % $A_{CP}(D^0 \rightarrow K_s K_s)$ (Belle + Belle II) = (-1.4 ± 1.3 ± 0.1) %
- In agreement with previous results

Precision comparable to the world's best measurement from LHCb

Dark Sector

Dark Sector searches at Belle II

- Three possible cases
 - Visible signatures
 - Invisible (missing energy / momentum)
 - "Long lived" (visible but non-prompt)
- Belle II has potential sensitivity to all of these, depending on the model/decay mode
- Dedicated triggers for low multiplicity

Collisions at 10.58 GeV Sensitive in the ~O(MeV-GeV)

Search for a $\mu\mu$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

- Searching for 4 tracks, at least three identified as muons
 - No extra energy in the event
- Signal extraction via fit scan to $M_{\mu\mu}$
 - Signature is a narrow peak in the opposite-charge dimuon mass

43

Search for Inelastic Dark Matter

- Models with two dark matter particles χ_1, χ_2 and a massive dark photon A' motivated by cosmological limits
 - χ_1 relic DM; χ_2 Long-lived
 - Extended with a dark Higgs h' that gives mass to the photon

[J. High Energ. Phys. 2021, 146 (2021)]

Search for Inelastic Dark Matter

- Models with two dark matter particles χ_1, χ_2 and a massive dark photon A' motivated by cosmological limits
 - χ_1 relic DM; χ_2 Long-lived
 - Extended with a dark Higgs h' that gives mass to the photon
- The signature is
 - 2 tracks forming a pointing displaced vertex
 - 2 tracks from a non-pointing displaced vertex
 - Missing energy
- Almost zero background

Search for Inelastic Dark Matter

- Expected background estimated in data from sidebands
- No significant excess found for any of the final states or combined
 - Setting 95% upper limits

Belle II Input to HVP

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

• In the anomalous magnetic momentum of the muon determination

$$a_{\mu}^{\text{SM}} = (g_{\mu} - 2)/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLBL}}$$

 The theoretical uncertainty is dominated (>80%) by the leading-order Hadronic Vacuum Polarization (HVP)

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

• In the anomalous magnetic momentum of the muon determination

$$a_{\mu}^{\text{SM}} = (g_{\mu} - 2)/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLBL}}$$

- The theoretical uncertainty is dominated (>80%) by the leading-order Hadronic Vacuum Polarization (HVP)
- In Belle II, the cross sections as a function of c.m. energy is measured using the initial state radiation (ISR) method
- Event selection: 2 tracks + 3 photons $e^+e^- \rightarrow \pi^+\pi^-(\pi^0 \rightarrow \gamma\gamma)\gamma_{LSR}$
- Fit to $M_{\gamma\gamma}$ spectrum in each $M_{3\pi}$ bin
- Residual background estimated from MC

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

- Study in the energy range of 0.62 3.50 GeV
 - Cross section at low energy higher (~10%) than BaBar, CMD-2 and SND
 - At high energy (> 1 GeV), in agreement with BaBar
- Contribution to a_{μ}^{HVP} in the 0.62 1.80 GeV energy range:

 $a_{\mu}^{\text{HVP},3\pi} = (48.91 \pm 0.23 \pm 1.07) \times 10^{-10}$

10⁴

10³

 10^{2}

10

0.7

0.75

0.8

section (nb)

Cross

Belle II Preliminary

This exp.

BABAR (21)

SND (02,03,20)

CMD-2 (04,07)

0.9

 $\sqrt{s'}$ (GeV)

0.95

1.05

3.4

48

 $\int L dt = 191 \text{ fb}^{-1}$

0.85

Ŷ.

6.5% higher than the global fit with 2.5σ significance

arXiv:2404.04915 Accepted in PRD for publication

Summary

- Overview of the physics program at Belle II covering B physics, tau lepton, charmed hadrons & dark sector
 - Many more results at <u>www.belle2.org</u>
- With an early data set and unique capabilities, Belle II is delivering **world-best measurements** for several observables
 - Most results presented using 365 fb⁻¹ on-resonance [arXiv.2407.00965]
- Run 2 will continue until the next upgrade of the detector, collecting several ab⁻¹
- Stay tuned! More results are coming

Backup

Tests of CKM Matrix

Figures: L. Silva, http://ckmfitter.in2p3.fr/www/docs/slides_ckmworkshop_2023.pdf

$$\phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = (22.2 \pm 0.7)^\circ$$

$$\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) = (85.2^{+4.8}_{-4.3})^{\circ}$$

$$\phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = (65.9^{+3.3}_{-3.5})^\circ$$

 $\pi^{0}\pi^{0}$

0

FIG. 2. Distributions of (left to right) ΔE , $M_{\rm bc}$, C, and w for the $B^0 \to \pi^0 \pi^0$ candidates with (top) positive and (bottom) negative q tags. The result of the fit to the data is overlaid. The data distributions are signal-enhanced (see text). Pulls are shown below each distribution.

 $|V_{ub}|$ from $B^0 \to \pi^- \ell^+ \nu$ and $B^+ \to \rho^0 \ell^+ \nu$

 $q^2 = (p_B - p_{\pi/\rho})^2$

Evidence for $B^+ \to K^+ \nu \bar{\nu}$ **decays**

O

FIG. 15. Observed yields and fit results in bins of the $\eta(BDT_2) \times q_{rec}^2$ space obtained by the ITA simultaneous fit to the off- and onresonance data, corresponding to an integrated luminosity of 42 and 362 fb⁻¹, respectively. The yields are shown individually for the $B^+ \rightarrow K^+ \nu \bar{\nu}$ signal, neutral and charged *B*-meson decays and the sum of the five continuum categories. The yields are obtained in bins of the $\eta(BDT_2) \times q_{rec}^2$ space. The pull distributions are shown in the bottom panel.

How do we reconstruct taus at Belle II?

hadrons

 τ

 \mathcal{V}_{τ}

55

 \hat{n}_{thrust}

- A τ event is never reconstructed completely (we lose neutrinos), then we use features of the event to identify τ -pair candidates.
- Event is divided in two sides (signal and tag) using a plane defined by a thrust axis, build with all the final state particles:

• $V_{thrust} = \frac{\sum_{i} |\vec{p_i}^{\ cm} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p_i}^{\ cm}|}$

• Thrust axis: \hat{n}_{thrust} such that V_{thrust} is maximum.

Tau Lepton Mass Measurement

- Major improvements in the determination of the beam energy and charged particle momentum
- Use energy of fully reconstructed B mesons (E^{*}_B) to calibrate \sqrt{s}
 - E^{*}_B only approximately equals √s, accounting extra corrections due to subtle effects from ISR photons, spread of the beam energy
- We use $D^0 \rightarrow K\pi$ to correct for the momentum of the tracks
 - Get phase-space dependent scale factors (SF) for K and π based on difference in peak position and PDG value of D⁰

$M_{\rm min} = \sqrt[]{M_{3\pi}^2} + 2(\sqrt{s/2} - E_{3\pi}^*)$	$)(E_{3\pi}^* - P_{3\pi}^*)$
Source	$\frac{\text{Uncertainty}}{[\text{ MeV}/c^2]}$
Knowledge of the colliding beams: Beam energy correction Boost vector	$\begin{array}{c} 0.07\\ \leq 0.01 \end{array}$
Reconstruction of charged particles: Charged particle momentum correction Detector misalignment	
Fitting procedure: Estimator bias Choice of the fit function	0.03
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

56

Tests of LFU at Belle II

Source	Uncertainty [%]
Charged-particle identification:	0.32
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Imperfections of the simulation:	0.14
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distribution	0.06
Tag side modelling	0.05
π^0 efficiency	0.02
Particle decay-in-flight	0.02
Tracking efficiency	0.01
Modelling of ISR	0.01
Photon efficiency	< 0.01
Photon energy	< 0.01
Detector misalignment	< 0.01
Momentum correction	< 0.01
Trigger	0.10
Size of the simulated samples	0.06
Luminosity	0.01
Total	0.37

Search for long-lived particle in $b \rightarrow s$ transitions

- Proposed dark Higgs-like scalar which mixes with SM
- Bump hunt in reconstructed LLP mass •
- Eight exclusive channels:
 - $B^+ \rightarrow K^+ | P$
 - $B^0 \rightarrow [K^{*0} \rightarrow K^{+}\pi^{-}] LLP$
 - LLP \rightarrow x⁺x⁻ for x \in (e,µ, π ,K)
- Main background: combinatorics in continuum, K_{s^0} (mass region vetoed)
- Main result: exclusive model independent limits for (pseudo-)scalar LLP
- First for decays into hadrons

Brookhaven

Jational Laboratory

CMS

L3

Belle II

 $\int L \, dt = 189 \, fb^{-1}$

KTeV

Belle II

BaBar

10⁰

Charm Tagging

- A typical $B\bar{B}$ event
 - Quantum correlation allows identification of "signal B" flavor based on "tag B"

Charm Tagging

- A typical $B\bar{B}$ event
 - Quantum correlation allows identification of "signal B" flavor based on "tag B"
- $\Upsilon(4S)$ signal decay products signal decay $K^+(\bar{s}u$ nal decay signal decay π

same side

opposite side

- Charm hadrons are different
 - No quantum correlation due to "fragmentation particles"
 - Using instead
 - $D^{*+} \rightarrow D^0 \pi^+$
 - $\boldsymbol{\cdot} D^{*-} \to \bar{D}^0 \pi^-$

Charm Flavor Tagger

- A novel method to identify the flavor of neutral charmed mesons
- Exploits the correlation between the flavor of a reconstructed neutral D meson and the electric charges of the rest of the event
- Tagging decision q = +1 (-1) for $D^0(\bar{D}^0)$, with a dilution factor r
- Effective tagging efficiency

 $\epsilon_{\text{tag}} = (47.91 \pm 0.07 \pm 0.51) \%$

 Approximately doubles the effective size of data sets for CP violation and charm mixing measurements

CP Violation in $D^0 \rightarrow K_s^0 K_s^0$

• Control mode $D^0 \to K^0_s K^0_s$

 $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$

HVP contributions to g_μ-2

Table II. Summary of contributions to the systematic uncertainty in $a_{\mu}^{3\pi}$ (%).

Source	Systematic uncertai	inty $(\%)$
Efficiency corrections	1.63	
Monte Carlo generator	1.20	NNLO QED
Integrated luminosity	0.64	generators
Simulated sample size	0.15	are crucial
Background subtraction	0.02	
Unfolding	0.12	
Radiative corrections	0.50	
Vacuum polarization corrections	0.04	
Total	2.19	

3.5

62

Control modes:

Brookhaven

National Laboratory

Simultaneous Determination of Exclusive & Inclusive |Vub|

- Long standing 3σ discrepancy between **exclusive** and **inclusive** determination of $|V_{ub}|$
- New measurement using the full Belle dataset.
- Fitter corporates experimental observation of $B \rightarrow \pi \ell v$ & other $B \rightarrow X_u \ell v$ normalizations
- Various fit scenarios applied:
 - Combined or separate $B^+ \to \pi^0 \ell \nu$ & $B^0 \to \pi^+ \ell \nu$
 - Input form factor constraint: Lattice QCD (LQCD) + exp. or only LQCD

Phys. Rev. Lett. 131, 211801

New result is