Time-dependent CP violation measurements in radiative penguin decays of B mesons at Belle and Belle II

Rishabh Mehta, On behalf of Belle II Collaboration

PPC - 2024 / Flavour Physics Parallel

CP violation in B⁰ decays

 \bar{b} \bar{b} \bar{b} \bar{u} \bar{u}

Direct CP Violation (C)

Interference between two paths (amplitudes).

$$\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

The CKM quark mixing matrix

Mixing Induced CP Violation (S)

TDCPV analyses in **B** factories

Pair produced neutral BBbar mesons are in coherence until one of them decays.

Boosted B mesons in the lab frame: easier tag and signal side vertex resolution.

Decay time distribution encodes CP violation parameters.

$$\mathcal{A}_{\rm CP}(\Delta t) = \frac{N(B^0 \to f_{\rm CP}) - N(\overline{B}^0 \to f_{\rm CP})}{N(B^0 \to f_{\rm CP}) + N(\overline{B}^0 \to f_{\rm CP})} (\Delta t) = (S_{\rm CP} \sin(\Delta m_d \Delta t) - C_{\rm CP} \cos(\Delta m_d \Delta t))$$

Radiative Penguin Decays

- Proceeds via one-loop diagrams at the lowest order.
- → Final state not a proper CP eigenstate due to photon polarisation.
- → S_{CP} helicity suppressed as $b_L \rightarrow s_R \gamma_R$ is m_s/m_b suppressed compared to $b_R \rightarrow s_L \gamma_L$
- → NP processes could contribute to a significant deviation in S_{CP}.

SuperKEKB and Belle II

SuperKEKB: an asymmetric e⁺e⁻ collider with electron (positron) beam energies at 7 (4) GeVs.

- → World record for the highest instantaneous luminosity!
- → Total Y(4s) data: 365 fb⁻¹

Belle II: detector built around the interaction point of the two beams.

- → ~2x impact parameter resolution as compared to Belle.
- → Better reconstruction efficiency of neutrals eg K_s , π^0 etc.

 $K_{s}\pi^{0}\gamma$: Introduction

- → b \rightarrow s γ decay, proceeds via one loop FCNC process at the leading order.
- → C_{CP} suppressed by $(m_s/m_b)^2$, while S_{CP} suppressed by (m_s/m_b) .
- → Largest branching fraction $(K^*\gamma)$ amongst radiative penguin modes and hence highest potential for NP search.
- → Theoretical uncertainty of a few % due to charm loop effect.

•
$$S^{SM} = -(2.3 \pm 1.6)\%^{[1]}$$

 $K_{c}\pi^{0}\gamma$: Event Selection

K_s selection:

- Use two charged tracks with pion mass hypothesis to reconstruct a Ks.
- Use BDT classifiers for removal of fake candidates.

π^0 selection:

- Use two photon clusters from ECL to form the π^0 candidate.
- Use BDT classifier for removal of fake candidates.

Prompt γ selection:

- Use the highest energy photon cluster from ECL.
- Use BDT based classifier for removal of photons from π^0/η .

Event selection:

- BDT classifier to suppress continuum background.
- Divide events into two regions:
 - MR1 (K*gamma) $M_{Ksπ0}$ ∈ [0.8,1] GeV/c²
 - MR2 (Ks $\pi 0\gamma$) M_{Ks $\pi 0$} \in [0.6,0.8], [1,1.8]GeV/c² ₇

$K_s \pi^0 \gamma$: Signal Extraction

- > 2-D fit to M_{bc} ΔE
- > 3 components:
 - o signal,
 - o qqbar background,
 - BBbar background

 $\Delta E = E_B^* - \sqrt{s}/2$ Signal
Continuum
B
B
background
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Energy difference [GeV]

Sample	Signal yield	$B\overline{B}$ bkg yield	S/N
$B^0 \to K^0_S \pi^0 \gamma$ in MR1	385 ± 24	20 ± 8	2.36
$B^0 \to K^0_S \pi^0 \gamma$ in non-MR1	171 ± 23	69 ± 19	0.34

https://arxiv.org/abs/2407.09139

Detour: Flavor Tagging at Belle II

- → Determine the flavor of tag side B (the other B) at the time of decay.
- Accomplished using multivariate methods:
 - Different categories for different signatures of flavor-specific decays.
 - Returns the tag flavor q and the dilution factor r.
- → Most efficient B flavor-tagger: 33% tagging efficiency (to be superseded by a newly developed GNN based flavor tagger^[2])

Categories	Targets]
Electron	e^-	a series
Intermediate Electron	e^+	\overline{B}^{0}
Muon	μ^{-}	D^{*+}
Intermediate Muon	μ^+	D°
KinLepton	e^{-}	
Intermediate KinLepton	ℓ^+	
Kaon	K^{-}	
KaonPion	K^-, π^+	B ⁰
SlowPion	π^+	D^+
FastHadron	π^-, K^-	
MaximumP	ℓ^-, π^-	
FSC	ℓ^-, π^+	
Lambda	Λ	\overline{B}^{0}
Total= 13		$\int \Lambda_c^+$

Detour: Vertexing at Belle II

Signal B:

- Uses TreeFitter^[3] algorithm to simultaneously fit an entire decay chain.
- Vertexed by using only track information from K_s pions.
- Nano-beam scheme helps in precise determination of beam spot used to further constrain the vertex.
- Events with poor vertex quality reserved for time-integrated fit.

Tag B:

 Uses KFit^[4] algorithm to fit the vertex using tracks in the rest of the event.

[3]. Krohn, J.-F. et al. Nucl.Instrum.Meth.A 976 (2020) 164269[4] J. Tanaka, Belle Note 194.

• Fit Δt distribution in seven bins of r values.

Param	Belle II	HFalv
S	$0.00^{+0.27}_{-0.26}\pm 0.03$	-0.16 ± 0.22
С	$-0.06 \pm 0.25 \pm 0.09$	-0.04 ± 0.14

$K_{s}\pi^{0}\gamma$: CPV parameter extraction

More potential modes at Belle II

К _S η γ	<mark>BaBar</mark> N(BB)=465M	$-0.18 + 0.49 = -0.46 \pm 0.12$	$-0.32 + 0.40 = -0.39 \pm 0.07$
	Belle N(BB)=772M	$-1.32 \pm 0.77 \pm 0.36$	$0.48 \pm 0.41 \pm 0.07$
	Average	-0.49 ± 0.42	0.06 ± 0.29
К _S ρ ⁰ γ	<mark>BaBar</mark> N(BB)=471M	$-0.18 \pm 0.32 +0.06 -0.05$	$-0.39 \pm 0.20 +0.03 -0.02$
	Belle N(BB)=657M	$0.11 \pm 0.33 + 0.05 = -0.09$	$-0.05 \pm 0.18 \pm 0.06$
	Average	-0.06 ± 0.23	-0.22 ± 0.14
K _S φ γ	Belle N(BB)=772M	0.74 +0.72 -1.05 +0.10 -0.24	-0.35 ± 0.58 $^{+0.10}$ $_{-0.23}$

Conclusion and Outlook

- ★ Time-dependent study of radiative penguin modes provide a rich ground for search for New Physics.
- ★ Belle II is the most promising experiment for study of these modes due to a clean environment and good neutrals reconstruction.
- ★ We present the most precise results to date for time-dependent study of $K_s \pi^0 \gamma$ decays of B mesons, by Belle II.
- \star The results agree with SM within uncertainty.

$K_s \pi^0 \gamma$: Resolution Function Modelling

- Need to model the detector and other effects on decay time difference to get the true deltat distribution.
- 1. Kinematic approximation: corrects the bias from small B⁰ momentum in the CM frame.
- 2. Sig B decay vertex resolution: accounts for the smearing of the decay vertex position by the finite detector resolution,
- 3. Tag B decay vertex resolution: consists of the detector resolution and the bias from non-primary decay vertices.